B10LOGICAL NEURAL NETWORKS (BNNSs)
TooLBOX FOR MATLAB: USER GUIDE

Amir Reza Saffari Azar Alamdari

VERSION 1.0

http://www.ymer.org
August 2004

Contact Addresses

EMAIL: amir@ymer.org

WEBSITE: http://www.ymer.org

ALT. WEBSITE: http://ee.sut.ac.ir/faculty/saffari/main.htm

COMMUNITY: http://groups.yahoo.com/group/computational-neuronscience

ADDRESS: No. A3, 2nd floor, Cheshm-Andaz, Moalem Str., Vali-Asr, Tabriz, Iran

amir@ymer.org
http://www.ymer.org
http://ee.sut.ac.ir/faculty/saffari/main.htm
http://groups.yahoo.com/group/computational-neuronscience

Contents

1.1
1.2

1.3

1.4

2.1

2.2

3.1

3.2

Introduction

Overview and Features
1.2.1 Current Features
1.2.2 Future Outlook
Installation Guide
1.3.1 Requirements
1.3.2 How toinstall?
Support ...

Basics of BNN

Components of a BNN 0oL
2.1.1 Architecture
2.1.2 Neuron Model
2.1.3 Synapse Model
2.1.4 Adaptation Model
2.1.5 Simulation Parameters
2.1.6 Input/Output
2.1.7 BNN Model
2.1.8 Simulating BNN o000
SUMMATY . . o v v vt et e e e e e e e

Architecture Model

NEWARCH Function
3.1.1 Syntax
3.1.2 Input Arguments L.
3.1.3 Output Object
3.1.4 Examples e
NEWARCHFC Function
321 Syntax
3.2.2 Input Arguments
3.2.3 Output Object
3.24 Examples e

IO O Otw w NN

© © o

CONTENTS ii

3.3 NEWARCHFF Function 19
3.3.1 Syntax 19
3.3.2 Input Arguments 20
3.3.3 Output Object 21
3.34 Examples oo 21

3.4 NEWARCHGF Function 21
341 Syntax 21
3.4.2 Input Arguments 21
3.4.3 Output Object 21
344 Examples 21

3.5 NEWARCHLC Function 21
3.5.1 Syntax 22
3.5.2 Input Arguments 22
3.5.3 Output Object 22
3.54 Examples o o 22

3.6 NEWARCHLF Function 22
3.6.1 Syntax 22
3.6.2 Input Arguments L. 22
3.6.3 Output Object 22
3.64 Exampleso o oo 22

3.7 CHECKARCH Function 23
371 Syntax 23
3.7.2 Input Arguments 23
3.73 Outputs 23

4 Neuron Model 24

4.1 NEWNEURON Function 24
4.1.1 Syntax 24
4.1.2 Input Arguments 25
4.1.3 Output Object 25
4.1.4 Examples 26

4.2 NEWNEURONIF Function 26
421 Syntax 27
4.2.2 Input Argumentso 27
4.2.3 Output Object 27
424 Examples 28

4.3 NEWNEURONHH Function 28
4.3.1 Syntax 28
4.3.2 Input Arguments Lo 29
4.3.3 Output Object L 29
434 Examples 29

44 NEWNEURONFEN Function 29

441 Syntax 29

CONTENTS iii

4.4.2 Input Arguments 30
4.4.3 Output Object 30
444 Examples 30

4.5 NEWNEURONML Function 30
4.5.1 Syntax 31
4.5.2 Input Arguments L. 31
4.5.3 Output Object 31
454 Examples 31

4.6 NEWNEURONCANON Function 31
4.6.1 Syntax 31
4.6.2 Input Arguments L 32
4.6.3 Output Object 32
4.6.4 Examples 32

4.7 NEWNEURONIZ Function 32
4.7.1 Syntax 32
4.7.2 Input Arguments 33
4.7.3 Output Object 33
4.74 Examples 33

4.8 CHECKNEURON Function 33
4.8.1 Syntax 33
4.8.2 Input Argumentso 33
4.83 Outputs 34

5 Synapse Model 35
5.1 NEWSYNAPSE Function 36
5. 1.1 Syntaxo 36
5.1.2 Input Arguments L 36
5.1.3 Output Object 37
5.1.4 Examples o 37

5.2 CHECKSYNAPSE Function 37
5.2.1 Syntax 37
5.2.2 Input Arguments 37
5.2.3 Outputs 37

6 Adaptation Model 38
6.1 NEWADAPT Function 38
6.1.1 Syntax 38
6.1.2 Input Arguments L. 39
6.1.3 Output Object 39
6.1.4 Examples oo 40

6.2 CHECKADAPT Function 40
6.2.1 Syntax 40

6.2.2 Input Arguments oL 41

CONTENTS iv
6.2.3 Outputs 41

7 Simulation Model 42
7.1 NEWSIM Function 42
711 Syntax oL 42
7.1.2 Input Arguments L. 43
7.1.3 Output Object 43
7.1.4 Examples 44

7.2 CHECKSIM Function 44
721 Syntax 44
7.2.2 Input Arguments L 44
7.2.3 Outputs 45
Input/Output Model 46
8.1 NEWIOMODE Function 46
81.1 Syntax 46
8.1.2 Input Arguments 47
8.1.3 Output Object 48
8.1.4 Examples o 48

8.2 CHECKIOMODE Function 48
82.1 Syntax 49
8.2.2 Input Arguments 49
823 Outputs 49
BNN Model 50
9.1 NEWBNN Function 50
9.1.1 Syntax 50
9.1.2 Input Arguments 51
9.1.3 Output Object 51
9.14 Examples 51

9.2 CHECKBNN Function 52
9.2.1 Syntax 52
9.2.2 Input Arguments oL 52
9.23 Outputs 52

10 Simulate a BNN 53
10.1 SIMBNN Function oL 53
10.1.1 Syntax 53
10.1.2 Input Arguments L 53
10.1.3 Output Object 53
10.1.4 Examples 53

CONTENTS

11 Tools

11.1 GETSTATES Function
11.1.1 Syntax
11.1.2 Input Arguments
11.1.3 Output Object
11.1.4 Examples

11.2 GETSPIKES Function
11.2.1 Syntax
11.2.2 Input Arguments
11.2.3 Output Object
11.2.4 Examples

11.3 GETTIME Function
11.3.1 Syntax
11.3.2 Input Arguments
11.3.3 Output Object
11.3.4 Examples

11.4 PLOTSTATES Function
11.4.1 Syntax
11.4.2 Input Arguments
11.4.3 Output Object
11.4.4 Examples

11.5 PLOTSPIKES Function
11.5.1 Syntax
11.5.2 Input Arguments
11.5.3 Output Object
11.5.4 Examples

11.6 PLOTSPIKES2D Function . . .
11.6.1 Syntax
11.6.2 Input Arguments
11.6.3 Output Object
11.6.4 Examples

12 How to Add to Library

12.1 Details of Simulator
12.2 How to Add Neuron Model . . .
12.3 How to Add Synapse Model . .

12.4 How to Add Adaptation Model

13 References

54
54
54
54
54
55
95
95
25
25
55
56
o6
o6
26
56
56
56
o6
57
57
57
57
57
57
57
58
58
o8
o8
o8

59
59
60
61
63

64

Chapter 1

Introduction

1.1 What is BNN Toolbox?

Biological Neural Network (BNN) Toolbox is MATLAB-based software to sim-
ulate network of biological realistic neurons, as an abstract model of brain and
Central Nervous System®. This software enables user to create and simulate var-
ious BNN models easily, using built-in library models, and just in a few lines of
code. User can also create custom models and add them to the library, using
library templates. A set of very descriptive examples are available to give a quick
introduction to the toolbox and to reduce the coding time for beginners. In addi-
tion this toolbox only covers spiking models of neurons and biologically plausible
network components. To simulate firing rate models (also known as ANN?), there
exists very well designed packages, such as Neural Network Toolbox of MATLAB.

This toolbox uses powerful MATLAB programming language. MATLAB is
a popular computation platform with highly specialized and powerful toolboxes
for most scientific and engineering fields. To use all benefits of this toolbox, user
must have an essential knowledge of programming in MATLAB or other similar
popular languages, such as C/C++ or PASCAL. But a very small experience in
defining variables and function usage is also suffices to use this package. User
also can gain this by tracking example codes. Note that this constraint will be
removed in next versions using a user friendly GUI system.

The main idea behind the first release is to present the essential concepts
of a general biological nervous system simulator in MATLAB environment and
gather feedback from users to improve next releases. So it is appreciated very
much for any kind of comments, bug reports, and discussions. These feedbacks
are believed to be the essential keys to keep this toolbox improving and evolving
in the future.

This toolbox is created and developed by personal interests of the author in

LCNS
2 Artificial Neural Networks

1.2 Overview and Features 3

modeling brain and CNS and is provided to other users as an open source free
software under GNU GPL?. Feel free to copy, modify, and distribute it according
to the license. To obtain the latest version of GPL, please refer to http://www.
gnu.org. Note that MATLAB itself is a commercial software provided by The
MathWorks, Inc. http://www.mathworks. com.

1.2 Overview and Features

As the name of the toolbox implies, the main goal of this software is to provide
users a set of integrated tools to create models of biological neural networks and
simulate them easily, without the need of extensive coding. Users can create and
simulate a huge network of spiking neurons in less than 10 lines of code (or even
in one line, if they give all arguments to the main function) using predefined
library functions. It is also possible to create and add new models to the library
easily, using template library items provided for this reason.

Since programming in MATLAB is now very popular, users also would have
the benefits of other toolboxes to extend their code and models easily. The
followings are a list of features available in this release.

1.2.1 Current Features

e Users can create special architectures for their network connections using
library tools. Current architectures in the library are:

Fully connected

Multilayer feedforward

Multilayer feedforward with general feedback

Multilayer feedforward with lateral connections

Multilayer feedforward with local feedback

AR

Any other kind of user defined architecture is also possible. Each network
connection consists of synaptic weight and transmission delay features. Ex-
ternal inputs to the network can be defined to be either analog currents
or time encoded spikes. In addition it is possible to restrict each neuron
to inhibitory, excitatory, or hybrid neurons (its behavior can change in the
simulation process).

e The spiking neuron models provided in the library are:

1. Linear leaky integrate-and-fire model

3General Public License

http://www.gnu.org
http://www.gnu.org
http://www.mathworks.com

1.2 Overview and Features 4

Nonlinear quadratic integrate-and-fire model
Hodgkin-Huxley model

FitzHugh-Nagumo model

Morris-Lecar model

Canonical phase model

Izhikevich model

N A

Users can define other special neuron models easily. It is also possible to
define different functions for threshold and reset behavior of a neuron (if
needed).

e Some predefined Post-Synaptic-Potential (PSP) behavior is available in the
library:

1. Two different versions of a-function

2. Simple synaptic weight summation for spike inputs
Again user defined synapses are possible.

e Users can define adaptation mechanisms for synaptic weights, transmis-
sion delays, and spike detection thresholds and any other parameter in the
network.

e The simulation process of the network is based on a event driven system,
meaning that the simulation stops for special computations such as calling
reset or adaptation functions whenever an action potential is generated in
the network. As a result the simulation speed depends highly on the rate
of the spike generation rather than complexity of the models or the number
of neurons in the network.

e For neuron models based on differential equations, simulation system uses
MATLAB’s powerful ODE solvers. Users have the chance to select various
solvers provided for stiff and non-stiff problems. For continuous time equa-
tion models (such as SRM), a special function will be written to solve the
model in next release.

e [t is possible to provide static or dynamic external inputs to the network.
Static inputs do not change over the simulation process of the model, but
dynamic inputs may change according to the time or system state variables.

e During the simulation process, it is possible to call some user defined func-
tions for specific tasks not included in the toolbox.

1.2 Overview and Features 5

Stop conditions for the simulation are very flexible. The default condition
is the simulation time limitation, but one can define a special function for
this reason.

Some illustrative examples are included in the toolbox for users to explain
how to write their code for simulating specific models. Users can change
these examples according to their own purposes to obtain a fast code gen-
eration system.

Since this is the first release, it contains the basic concepts about how this
toolbox would be in future releases. As mentioned earlier, the author would
be very grateful for any kind of words from users to keep this toolbox better
and alive in next versions. You can help the development process by providing
comments, suggesting new models, reporting bugs, and anything you think
about this toolbox. The following list is the features to be added to the toolbox
in the next releases.

1.2.2 Future Outlook

Next releases will have a very user friendly GUI* to improve the model cre-
ation and simulation processes. Because of time considerations this feature
is not present in this release.

There will be a Simulink blockset for simulating BNNs using MATLAB
Simulink. This will highly increase the flexibilities of this toolbox with
linking it to other Simulink libraries.

There will be a variant of this toolbox for those users without MATLAB
software. So they will be able to run this toolbox as a stand-alone software.

Next versions will be much faster than this version in simulating models.

The library will have more models for neurons, synapses, and architectures.
If you have a model and wishing it to be included in next releases, please
contact the author.

The adaptation library will be added, containing various learning mecha-
nisms for different parts of the system.

The possibility to simulate continuous time equations, such as SRM, will
be added.

4Graphical User Interface

1.3 Installation Guide 6

e Modular architecture will be added to provide a tool for simulating modular
and hierarchical network models.

e [t is possible to add some specific tools for simulating compartmental models
of neurons and networks. Since there are other highly specialized packages
for this reason, such as NEURON or GENESIS, this function is not covered
in this release, but might be included if users wish for such a feature.

e The programming style for essential definitions of this software will
be changed to OOP® style using Classes and Objects programming of
MATLAB.

e It would be provided to export the simulation results in different file for-
mats, such as Excel.

Next release will be within 3 months from this one.

1.3 Installation Guide

1.3.1 Requirements
Here is the check list for the essential requirements to run this toolbox.
e MATLAB version 7.0 or 6.x. See Notes section below for more information.

e The latest version of the BIOLOGICAL NEURAL NETWORKS TOOLBOX FOR
MATLAB.

Notes:

Since MATLAB system is a script interpreter, you need to have MATLAB
running on your computer to execute this toolbox (and of course any other MAT-
LAB program). Because of this feature, most of the MATLAB programs are OS
independent, if one does not use features provided for a specific OS. So there is
no restriction about the system specifications including hardware and operating
system except that it must have a MATLAB installed on it and also be capable
of running MATLAB properly.

The toolbox is originally developed using MATLAB 7.0, Release 14 and is
tested successfully with MATLAB 6.x, Release 13 under Microsoft Windows 2000
Professional.

You need also to download the latest version of this toolbox and re-
lated documentation from http://www.ymer.org, from the alternative web-
site http://ee.sut.ac.ir/faculty/saffari/res-bnntoolbox.htm, or from
the computational neuroscience community http://groups.yahoo.com/group/
computational-neuroscience.

50bject Oriented Programming

http://www.ymer.org
http://ee.sut.ac.ir/faculty/saffari/res-bnntoolbox.htm
http://groups.yahoo.com/group/computational-neuroscience
http://groups.yahoo.com/group/computational-neuroscience

1.4 Support 7

1.3.2 How to install?

The toolbox files are compressed into a zip file format, so after downloading it
you will need a decompressor program to unzip the files. There is also an extra
decompressor MATLAB program on the website for those unable to unzip the
toolbox.

Unpack the toolbox files into any directory you wish and then run the install.m
file in the root directory of the toolbox. This program will add the toolbox
directories into the MATLAB search path, enabling MATLAB to find toolbox
functions. You can change the toolbox directory any time later, but be sure to
run the installation file again or add the new paths manually.

Now you are ready to start working with the toolbox.

1.4 Support

The author would do his best to provide a good email supporting system for any
kind of help regarding this toolbox. Please state your questions clearly and if
possible with the related programs.

THIS SOFTWARE COMES WITH NO WARRANTY WHATSOEVER.
THE AUTHOR IS NOT RESPONSIBLE FOR ANY DAMAGE CAUSED BY
THE (MIS)USE OF THIS SOFTWARE!

Chapter 2
Basics of BNN

A Biological Neural Network or simply BNN is an artificial abstract model of
different parts of the brain or nervous system, featuring essential properties of
these systems using biologically realistic models. Neurons in the CNS commu-
nicate using short duration pulses, called action potentials or spikes, which the
basic features of these signals, such as amplitude and temporal properties, are
not different for a population of neurons in a certain part of the CNS. So the
basic feature of a BNN is to use spiking neurons instead of traditional firing rate
models (also known as sigmoidal neurons) used in ANNs. Because of this spiking
behaviour, in most cases Spiking Neural Networks (SNNs) term is used instead
of BNNs for these models.

The basic components of a BNN model is described in next section using
a very simple and illustrative example explaining the essential features of the
toolbox. It is recommended for beginners in computational neuroscience to read
some reference books regarding modeling aspects of neuronal systems, since this
manual is not going to repeat them here. It is supposed throughout this guide
that the user has the eseential knowledge of spiking neurons

2.1 Components of a BNN

Let’s start this section with a simple example. Suppose we want to simulate a
network of three fully connected integrat-and-fire neurons using this toolbox. The
source code for this example is available in the examples directory of the toolbox,
under examplel.m. Most of the functions in this example use default values for
their input arguments. This will simplify the introduction process. Note that
the full description of the commands and their input arguments will be given in
next chapters. To open this example in a m-file editor, execute edit examplel in
command window or run Open option from File menu and select examplel.m.
The first three lines of the example are just clean up tasks, it clears command
window, current figure, and variables in the workspace. If you don’t want to lose

2.1 Components of a BNN 9

these information, comment these lines with inserting % at the beginning of the
commands.

2.1.1 Architecture

The first step in creating a BNN model is to define the architecture of the system.
Architecture of a BNN refers to the basic structure and topology of connections
in a network of spiking neurons. It also defines how the external inputs are
connected to the neurons.

Each connection has two basic parameters: synaptic weight and transmission
delay. Synaptic weight defines the efficiency or the strength of the input to a spe-
cific neuron from other neurons or external sources. The zero value for a synaptic
weight is equal to disconnecting the source from a neuron. Because of biochemi-
cal nature of signal transmission in neurons, the process of communication has a
temporal delay, defined by transmission delay of each connection.

Neurons in CNS are divided into two different types: Inhibitory and Excita-
tory. The architecture object also stores the type of each neuron in the network.
In addition, the architecture object enables user to specify the properties of ex-
ternal inputs to be as spiking and analog stimulation currents.

The following command defines the network architecture to be a fully
connected structure of 3 excitatory neurons with one external analog input
current:

NetArch = newarchfc(3, 1, -1);

2.1.2 Neuron Model

The next step is to define the model of neurons in the network. The basic part of
this object is the Differential Equations (DEs) of the neuron behavior. Because
all neurons in this toolbox are spiking models, it is necessary to define the spike
detection (also known as threshold or event) and reset functions. The spike
detection function determines when a specific neuron fires a spike according to
its state variables. The reset function is responsible for the behavior of the neuron
right after the transmission of the spike.

The next line of the example describes the neurons of the BNN to be linear
leaky integrate-and-fire:

NeuronModel = newneuronif;

2.1.3 Synapse Model

The process of interaction of neurons in the network with each other and also the
effect of external spiking inputs on neurons is described by the synapse model.

2.1 Components of a BNN 10

Upon receiving a spike from a pre-synaptic source, a Post-Synaptic-Potential
(PSP) is triggered on the destination neuron. The synapse model consists of
functions to describe the PSP behavior.

The following command creates a synapse model using the default values:

SynapseModel = newsynapse;

2.1.4 Adaptation Model

Adaptation model is used to describe the plasticity and learning mechanisms
available for a specific BNN. Synaptic weight, transmission delay, threshold value,
and model parameters plasticity functions can be defined using adaptation mech-
anism.

The next line described the adaptation object with default values:

AdaptModel = newadapt;

2.1.5 Simulation Parameters

To simulate a BNN properly, we have to specify simulation parameters, such
as start and stop time, initial conditions, DE solver type, user defined custom
function, and stop function. The main simulator program starts the simulation by
solving the DEs from the start time and specified initial conditions. It stops the
solver when a spike is generated, and calls adaptation and user defined custom
functions. Then the simulation starts again. This process repeats until some
stopping criteria is satisfied, such as stop time or user defined stop command.

In next command we specify stop time to be 20ms and leave other arguments
to get default values:

SimParam = newsim(20);

2.1.6 Input/Output

The last component of the BNN model is the Input/Output object. This module
specifies several features of input and output system of BNN, such as which values
external inputs have at any time, saving options, and also some storage fields for
the simulation results and output spike times.

For our simulation example, we are going to have a 1A external input current:

IOMode = newiomode('none’ , [] , 1);

2.2 Summary 11

2.1.7 BNN Model

Now we have all the required objects to construct a BNN model. The next line
of code gathers the previous modules into a single BNN object:

network = newbnn(NetArch , NeuronModel , SynapseModel , AdaptModel , Sim-
Param , IOMode);

2.1.8 Simulating BNN

The final step is to simulate the BNN model, using following command:
network = simbnn(network);

Now we can run this program with either executing the examplel in command
window or selecting Run from Debug menu of the m-file editor. Note the messages
appearing in the command window with each successful execution of program
commands. With each spike generation the current time of simulation is also
shown. After the completion of simulation, the membrane potentials are displayed
in a figure.

2.2 Summary

Summarizing the example presented above, to create and simulate a BNN model
properly, some basic components must be specified first, and then combined to-
gether to build a BNN object. This object can be simulated and the results can
be plotted using provided tools.

In next chapters each component will be described in details separately. In
addition available library items will be presented. Defining custom models and
adding them to the library will be explained using function templates.

Chapter 3

Architecture Model

This chapter contains the description of the Architecture component and its
variants. The most important factor for an architecture object is the topology
of connections. Throughout the rest of the toolbox, the following standard will
be used:

For any connection from input source j to destination 7, a;; will represent
the synaptic weight or transmission delay of that connection.

Using this standard, connection topology of the network can be repre-
sented using four matrixes: two for interneuron connection weights and delays,
and two for inputs/neurons connection weights and delays. If we have N neurons
and M external inputs in the network, then the size of the first two matrixes is
N x N and the last two is N x M. These matrixes will be used by the simulation
programs later. Note that a zero value for the synaptic weight of a specific
connection would result in a disconnection between source and destination. Note
that all timings in this toolbox are in msec. scale.

3.1 NEWARCH Function

The main function for the architecture component generation is the NEWARCH.
The following lists describe the input arguments, output object, and default val-
ues for this function. Note that the input arguments must be entered only in the
specified order. This is a very important issue when you want to use the default
value for an argument. Let’s state this problem with an example: suppose there
is function y = f(a,b) with two input arguments. If you enter y = f(2,3), the
function will take @ = 2 and b = 3. If you enter y = f(2), the function will take
a = 2 and will insert the default value for b. If you enter nothing, y = f, then
the function will assume both default values for the a and b.

3.1 NEWARCH Function 13

3.1.1 Syntax

NetArch = newarch(neuron_num , input_num , input_type , neuron_type , input_weight ,
neuron_weight , input_delay , neuron_delay)

3.1 NEWARCH Function

14

3.1 NEWARCH Function

15

3.1.2 Input Arguments

Input Name

neuron_nui

input_num

input_type

neuron_type

input_weight

neuron_weight

input_delay

neuron_delay

Description

Number of neurons in the network: N. Must
be an integer greater than zero. Default is a
random number between 1 and 11.

Number of inputs in the network: M. Must
be an integer than zero. Default is a random
number between 1 and 11.

A vector of size M, each element corresponds
to one of inputs. There are two different
types of inputs: spiking and analog current.
For spiking insert +1 and for analog current
insert —1. Default is spiking for all inputs.

A vector of size N, each element corresponds
to one of neurons. There are three differ-
ent types of neurons: excitatory, inhibitory,
and hybrid (can be both excitatory and in-
hibitory at the same time). For excitatory
insert +1, for inhibitory insert —1, and for
hybrid insert 0. Default is randomly chosen
excitatory/inhibitory neurons.

A matrix of size N x M, each element a;;
corresponds to synaptic weight of connection
from jth input to ith neuron. Default is a
random matrix drawn from a uniform distri-
bution.

A matrix of size N x N, each element a;;
corresponds to synaptic weight of connection
from jth neuron to ¢th neuron. Default is a
random matrix drawn from a uniform distri-
bution.

A matrix of size N x M, each element a;; cor-
responds to transmission delay of connection
from jth input to ¢th neuron. Note that the
time scale is msec. Default is a zero for all
connections.

A matrix of size N x N, each element a;; cor-
responds to transmission delay of connection
from 7th neuron to 7th neuron. Note that the

3.1 NEWARCH Function 16

3.1.3 Output Object

The output object is a structure variable containing the fields listed below. To
access a particular field use ObjectName.FieldName style. For example if the
object name is NetArch, the NetArch.NeuronNum will refer to number of neurons
in this object. All of other architecture functions use this structure as output
argument.

Field Name Description

NeuronNum Number of neurons in the network.
InputNum Number of inputs in the network.
InputType Input types vector.

NeuronType Neuron types vector.

InputWeight Input connections weight matrix.
NeuronWeight Interneuron connections weight matrix.
InputDelay Input connections delay matrix.
NeuronDelay Interneuron connections delay matrix.

3.1.4 Examples

1. A network architecture with following properties: 4 neurons: 1 excitatory,
2 inhibitory, 1 hybrid. 2 inputs: 1 spiking and 1 analog current. Weights
of all connections are equal to 1. All delays are 0.5msec.

NetArch = newarch(4 , 2, [1; -1] , [L; -1 ; -1 ; 0] , ones(4 , 2) , ones(4
, 4), 0.5%ones(4 , 2) , 0.5%ones(4 , 4));

2. A network architecture with 10 neurons and 5 inputs. All other values are
set to default.

NetArch = newarch(10 , 5);

3.2 NEWARCHFC Function 17

3.2 NEWARCHFC Function

This function creates a fully connected architecture, i.e. all neurons and inputs
are connected together.

3.2.1 Syntax

NetArch = newarchfc(neuron_num , input_num , input_type , neuron_type , weight_type ,
delay_type)

3.2 NEWARCHFC Function

18

3.2.2 Input Arguments

Input Name

neuron_nui

input_num

input_type

neuron_type

weight_type

weight_type

Description

Number of neurons in the network: N. Must
be an integer. Default is a random number
between 1 and 11.

Number of inputs in the network: M. Must
be an integer. Default is a random number
between 1 and 11.

A vector of size M, each element corresponds
to one of inputs. There are two different
types of inputs: spiking and analog current.
For spiking insert +1 and for analog current
insert —1. Default is spiking for all inputs.

A vector of size N, each element corresponds
to one of neurons. There are three differ-
ent types of neurons: excitatory, inhibitory,
and hybrid (can be both excitatory and in-
hibitory at the same time). For excitatory
insert +1, for inhibitory insert —1, and for
hybrid insert 0. Default is randomly chosen
excitatory/inhibitory neurons.

A string indicating how to initialize the
weight matrixes: 'random’ for a random uni-
form distribution, 'normal’ for a random nor-
mal distribution, ’one’ for all weights equal
to 1, and 'zero’ for all weights equal to zero.
Default is 'random’.

A string indicating how to initialize the de-
lay matrixes: 'random’ for a random uniform
distribution, 'one’ for all delays equal to 1,
and 'zero’ for all delays equal to zero. De-
fault is 'zero’.

3.2.3 Output Object

The same as NEWARCH.

3.3 NEWARCHFF Function 19

3.2.4 Examples

1. A fully connected network architecture with following properties: 4
neurons: 1 excitatory, 2 inhibitory, 1 hybrid. 2 inputs: 1 spiking and 1
analog current. Weights of all connections are drawn from random uniform
distribution. All delays are equal to one

NetArch = newarchfc(4,2,[1;-1],[1;-1;-1;0], 'random’, 'one’);

3.3 N EWARCHFF Function

This function creates a feedforward multilayer architecture, i.e. neurons are di-
vided into groups called layers. The layers have an order which outputs of layer
number 7n is connected only to inputs of layer number n + 1. Inputs are only
connected to layer number 1.

3.3.1 Syntax

NetArch = newarchff(neuron_num , input_num , input_type , neuron_type , weight_type ,
delay_type)

3.3 NEWARCHFF Function

20

3.3.2 Input Arguments

Input Name

neuron_nui

input_num

input_type

neuron_type

weight_type

weight_type

Description

Number of neurons in each layer:
[N1, Ny, ..., Ng] for a network with £ layer
and NV; neurons in layer number ¢. Default is
a single layer network with random number
of neurons between 1 and 11.

Number of inputs in the network: M. Must
be an integer. Default is a random number
between 1 and 11.

A vector of size M, each element corresponds
to one of inputs. There are two different
types of inputs: spiking and analog current.
For spiking insert +1 and for analog current
insert —1. Default is spiking for all inputs.

A vector of size N (total number of neurons
in layers), each element corresponds to one
of neurons. There are three different types
of neurons: excitatory, inhibitory, and hy-
brid (can be both excitatory and inhibitory
at the same time). For excitatory insert +1,
for inhibitory insert —1, and for hybrid in-
sert 0. Default is randomly chosen excita-
tory/inhibitory neurons.

A string indicating how to initialize the
weight matrixes: 'random’ for a random uni-
form distribution, 'normal’ for a random nor-
mal distribution, ’one’ for all weights equal
to 1, and ’'zero’ for all weights equal to zero.
Default is 'random’.

A string indicating how to initialize the de-
lay matrixes: 'random’ for a random uniform
distribution, 'one’ for all delays equal to 1,
and 'zero’ for all delays equal to zero. De-
fault is 'zero’.

3.4 NEWARCHGF Function 21

3.3.3 Output Object
The same as NEWARCH.

3.3.4 Examples

1. A feedforward network architecture with following properties: 3 layer:
with 1 excitatory and 2 inhibitory in layer 1, 4 excitatory in layer 2, and 2
hybrid in layer 3. 2 inputs: 1 spiking and 1 analog current. Weights of all
connections are drawn from random uniform distribution. All delays are
equal to one

NetArch = newarchff([3 ;4 ;2] ,2,[1;-1],[t;-1;-1;1;1;1;1;
0;0], 'random’ , 'one’);

3.4 NEWARCHGF Function

This function creates a feedforward multilayer architecture with general feedback,
i.e. the same as feedforward except that outputs of the last layer are connected
to inputs of first layer.

3.4.1 Syntax

NetArch = newarchgf(neuron_num , input_num , input_type , neuron_type , weight_type ,
delay_type)

3.4.2 Input Arguments
The same as NEWARCHFF.

3.4.3 Output Object
The same as NEWARCH.

3.4.4 Examples
The same as NEWARCHFF.

3.5 NEWARCHLC Function

This function creates a feedforward multilayer architecture with lateral connec-
tion for each layer, i.e. the same as feedforward except that outputs of each layer
are connected to inputs of the same layer.

3.6 NEWARCHLF Function 22

3.5.1 Syntax

NetArch = newarchlc(neuron_num , input_num , input_type , neuron_type , weight_type ,
delay_type)

3.5.2 Input Arguments
The same as NEWARCHEFF.

3.5.3 Output Object
The same as NEWARCH.

3.5.4 Examples
The same as NEWARCHFF.

3.6 NEWARCHLF Function

This function creates a feedforward multilayer architecture with local feedbacks
for each layer, i.e. the same as feedforward except that outputs of the each layer
are connected to inputs of the previous layer.

3.6.1 Syntax

NetArch = newarchlf(neuron_num , input_num , input_type , neuron_type , weight_type ,
delay_type)

3.6.2 Input Arguments
The same as NEWARCHFF.

3.6.3 Output Object
The same as NEWARCH.

3.6.4 Examples
The same as NEWARCHFF.

3.7 CHECKARCH Function 23

3.7 CHECKARCH Function

This function checks an architecture object for errors and returns a message and
a flag indicating the condition of the object.

3.7.1 Syntax
[CheckMessage , CheckFlag] = checkarch(NetArch)

3.7.2 Input Arguments

An architecture object.

3.7.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. ’OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 4

Neuron Model

This chapter contains the description of the Neuron component and its variants.
Three essential parts of a neuron model are:

1. Differential Equations (DEs) of the state variables of the model.
2. Spike detection procedure.
3. Reset procedure.

Eq(4.1) gives the general and complete structure of a neuron model:

dx

= = Ftx)+1(tx) (4.1)

which x is the state vector, F'(¢,x) is the internal dynamics, and I(t,x) is the
total external or internal dendritic current. The last term will be described in
next chapter under the general definition of synapse.

Please refer to chapter 9 for more information about adding custom neuron
models to the library and also the structure of functions. This chapter continues
with description of basic neuron component and library items available for this
version.

4.1 NEWNEURON Function

This is the main function for custom neuron model component definition.

4.1.1 Syntax

NeuronModel = newneuron(neuron_fun , model_type , state_num , model_param ,
spike_det_fun , spike_det_fun_param , reset_fun , reset_fun_param)

4.1 NEWNEURON Function

25

4.1.2 Input Arguments

Input Name

neuron_fun

model_type

state_num

model_param

spike_det_fun

spike_det_fun_param

reset_fun

reset_fun_param

Description

Function name containing neuron’s DEs.
Must be a string. Default value is
int_fire lin” (linear integrate-and-fire neu-
ron).

Model type. Always must be 'CDE’ for this
version. Default value is "CDE’.

Number of state variables in the DEs. De-
fault is 1.

Parameters for the model. Must be a vector.
Enter ’def’ for default values.

Function name for spike detection algorithm.
Default value is ’threshold_fun’.

Parameters for the spike detection function.
Enter 'def’ for default values.

Function name for reset algorithm. Enter
'none’ if there is no need for reset. Default
value is 'reset_fun’.

Parameters for the reset function. Enter 'def’
for default values.

4.1.3 Output Object

The output object is a structure variable containing the fields listed below. All
of other neuron functions use this structure as output argument.

4.2 NEWNEURONIF Function

26

Field Name

Model.NeuronFun

Model.ModelType
Model.StateNum
Model.ModelParam

SpikeDet.SpikeDetFun

SpikeDet.SpikeDetFunParam

Reset.ResetFun

Reset.ResetFunParam

4.1.4 Examples

Description

Function name containing neuron’s
DEs.

Model type.
Number of state variables in the DEs.
Parameters for the model.

Function name for spike detection algo-
rithm.

Parameters for the spike detection
function.

Function name for reset algorithm.

Parameters for the reset function.

1. A Hodgkin-Huxley neuron with standard parameters and a spike detection
function using a threshold of 10mV:

NeuronModel = newneuron('hodgkin_huxley’ , 'CDE’ , 4 , 'def’ , "hh_threshold_fun’

, 10, 'none’ , 'def’);

2. A leaky linear integrate-and-fire neuron with reset potential set to 1mV.
All other values are set to default.

NeuronModel = newneuron('int_fire_lin’ , '"CDE' , 1 , 'def’ , 'threshold_fun’ ,

'def’ | 'reset_fun’ , 1);

4.2 NEWNEURONIF Function

This function creates an integrate-and-fire neuron object. There are two different

type of this model in the library:

1. Leaky linear integrate-and-fire, see Eq(4.1).

2. Quadratic nonlinear integrate-and-fire, see Eq(4.2).

4.2 NEWNEURONIF Function 27

du
Ty = —ult) +RI() (4.2)
Tmccl;; = ap(u —u)(u—u.) + RI(t) (4.3)
7. = RC (4.4)

Spike detection and after spike reset is described by (f is the most recent spike
time):

if w>6 then t=t, ult")=u, (4.5)

Default values for model and threshold function parameters are listed bellow.
Note that you must preserve the order of this table whenever you try to load
other parameters into the model. Also the default scale for each parameter is the
same as what is displayed in this table.

C = 1uF | R = 10k

ag =1 u, = 0mV | u, = 0.5mV
0 =1mV

4.2.1 Syntax

NeuronModel = newneuronif(if_-model , model_param , spike_det_fun_param , re-
set_fun_param)

4.2.2 Input Arguments
Input Name Description

if_model Integrate-and-fire model name: can be ’lin-
ear’ or 'quadratic’. Default value is ’linear’.

model_param Parameters for the model. Enter ’'def’ for
default values.

spike_det_fun Function name for spike detection algorithm.
Default value is threshold_fun’.

spike_det_fun_param Parameters for the spike detection function.
Enter 'def’ for default values.

4.2.3 Output Object
The same as NEWNEURON.

4.3 NEWNEURONHH Function 28

4.2.4 Examples

1. A quadratic model with following parameters: R = 20k$2,C' = 4uF,ag =
2,u, = 0.5mV,u, = 1mV

NeuronModel = newneuronif('quadratic’ , [4,20, 2, 0.5, 1]);

4.3 NEWNEURONHH Function

This function creates a Hodgkin-Huxley (HH) neuron model with following equa-
tions:

C’Cj;; = I —[gyam®h(u — Eng) + gen*(u — Ex) + go(u — E)] (4.6)
dm
o = emll=m) = Bam (4.7)
dn
@ = = n) = fBan (4.8)
dh
@ = nll—h) = Buh (4.9)

Original HH model does not have any spike detection and reset function. But
because the simulator program has to detect the spike generation event, we added
a threshold function to this model. The default value for this threshold is OmV .

Default values for model parameters are listed bellow. Note that you must
preserve the order of this table whenever you try to load other parameters into
the model. Also the default scale for each parameter is the same as what is
displayed in this table.

gne = 120 g = 36 gr, = 0.3
En, =50mV | Ex = —7imV | B, = —54.4mV
C=1uF

4.3.1 Syntax

NeuronModel = newneuronhh(model_param , spike_det_fun_param)

4.4 NEWNEURONFN Function 29

4.3.2 Input Arguments

Input Name Description

model_param Parameters for the model. Enter 'def’ for
default values.

spike_det_fun_param Parameters for the spike detection function.
Enter 'def’ for default values.

4.3.3 Output Object
The same as NEWNEURON.

4.3.4 Examples

1. A HH model with following parameters: gy, = 110,9x = 40,9, =
0.5, Eno = 60mV, Ex = —80mV, Ep, = —60mV,C = 2uF

NeuronModel = newneuronhh([110, 40, 0.5, 60, -80, -60 , 2]);

4.4 NEWNEURONFN Function

This function creates a FitzHugh-Nagumo (FN) neuron model with following
equations:

€ = —v(v—a)(v—1)—w+1 (4.10)
d
di; = v—9w (4.11)

Like HH model, original FN model does not have any spike detection and reset
function. But because the simulator program has to detect the spike generation
event, we added a threshold function to this model. The default value for this
threshold is 0.8.

Default values for model parameters are listed bellow. Note that you must
preserve the order of this table whenever you try to load other parameters into
the model.

|a=01]e=0.01][7y=05]

4.4.1 Syntax

NeuronModel = newneuronfn(model_param , spike_det_fun_param)

4.5 NEWNEURONML Function 30

4.4.2 Input Arguments

Input Name Description

model_param Parameters for the model. Enter 'def’ for
default values.

spike_det_fun_param Parameters for the spike detection function.
Enter 'def’ for default values.

4.4.3 QOutput Object
The same as NEWNEURON.

4.4.4 Examples
1. A FN model with following parameters: a = 0.05,¢ = 0.02,7 = 0.6

NeuronModel = newneuronfn([0.05 , 0.02 , 0.6]);

4.5 NEWNEURONML Function

This function creates a Morris-Lecar (ML) neuron model with following equa-
tions:

CZ = —90aMoo(V)(Vv — Ecy) — ggw(v — Ex) — gr(v — Er) + 1(4.12)

Cg; _ “D[MOOT(j()U)_w] (4.13)

meo(v) = 0.5(1 + tanh(> - 1)) (4.14)

wee(v) = 0.5(1+ tanh(> - %) (4.15)
1

Tw(v) = cosh(*5,22) (4.16)

Like HH model, original ML model does not have any spike detection and reset
function. But because the simulator program has to detect the spike generation
event, we added a threshold function to this model. The default value for this
threshold is 40mV .

Default values for model parameters are listed bellow. Note that you must
preserve the order of this table whenever you try to load other parameters into
the model.

4.6 NEWNEURONCANON Function 31

goa =44 g =38 gr =2

ECa = 120mV EK = —84mV EL = —60mV
1}1:—1.2 1}2:18 'U3:2

vy = 30 ¢ =0.04

4.5.1 Syntax

NeuronModel = newneuronml(model_param , spike_det_fun_param)
4.5.2 Input Arguments
Input Name Description

model_param Parameters for the model. Enter ’def’ for
default values.

spike_det_fun_param Parameters for the spike detection function.
Enter 'def’ for default values.

4.5.3 Output Object
The same as NEWNEURON.

4.5.4 Examples
1. A ML model with default parameters and threshold value of 30mV:

NeuronModel = newneuronml('def’ , 30);

4.6 NEWNEURONCANON Function

This function creates a canonical phase neuron model with following equations:

dy
dt

There is no adjustable parameter for this model. Spike detection is described
by:

= 1—cos(p)+ (1 +cos(p))l (4.17)

if p>m then =t (4.18)

4.6.1 Syntax

NeuronModel = newneuroncanon

4.7 NEWNEURONIZ Function 32

4.6.2 Input Arguments

No input argument.

4.6.3 Output Object
The same as NEWNEURON.

4.6.4 Examples

1. A canonical phase model:

NeuronModel = newneuroncanon;

4.7 NEWNEURONIZ Function

This function creates an Izhikevich neuron model with following equations:

d
%f = 0.040% + 50+ 140 —u+ T (4.19)
v
d
v%ft = a(bv —u) (4.20)

Spike detection and after spike reset is described by:

if w>60 then t=t, o(t")=culth)=ult")+d (4.21)

Default values for model and reset function parameters are listed bellow. Note
that you must preserve the order of this table whenever you try to load other
parameters into the model.
a=0.02|b=0.2
c=—65|d=28
0 =30

4.7.1 Syntax

NeuronModel = newneuroniz(model_param , spike_det_fun_param , reset_fun_param)

4.8 CHECKNEURON Function 33

4.7.2 Input Arguments

Input Name Description

model_param Parameters for the model. Enter 'def’ for
default values.

spike_det_fun_param Parameters for the spike detection function.
Enter 'def’ for default values.

reset_fun_param Parameters for the reset function. Enter 'def’
for default values.

4.7.3 Output Object
The same as NEWNEURON.

4.7.4 Examples

1. An Izhikevich model with following properties: a = 0.01,b6 = 0.3,¢ =
—70,d = 6.5,60 = 20.

NeuronModel = newneuroniz([0.01 , 0.3] , 20, [-70, 6.5]);

4.8 CHECKNEURON Function

This function checks a neuron object for errors and returns a message and a flag
indicating the condition of the object.

4.8.1 Syntax
[CheckMessage , CheckFlag] = checkneuron(NeuronModel)

4.8.2 Input Arguments

A neuron object.

4.8 CHECKNEURON Function 34

4.8.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. ’OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 5

Synapse Model

This chapter contains the description of the Synapse component and its variants.
Two essential parts of a synapse model are:

1. External PSPs.
2. Internal PSPs.

Eq(5.1) gives the general structure of a synapse model:

I(t,%) = T + 5 + 1 (5.1

wnt

which I(t,x) is the total input current to a neuron, 27" is the external analog

current injected to a neuron, I:?*¢ is the PSP due to external spiking inputs,

and 7% is the PSP because of spikes from other neurons in the network. Since
the current injection is not related to synapses, the synapse object only has the
properties of the effects of spiking inputs. There are three different PSP functions
in the library:

1. a-function: I°P*e = i PO wk(emp(—t_i“im_dk)), default: 7, = 10msec.
2. a-function2: [= 137, 37, wk(emp(—t_tjiis_dk) — emp(—t_ti“T_(b“)), de-

fault: 7, = 10msec, 7,,, = Smsec.

3. Delta function: I*rike = 3~ > wpd(t — ti — dy,), default: ValidPeriod =
2msec.

which I°P*¢ is the spike related input current for a neuron, wy, and d, are synaptic
weight and transmission delay for kth connection, respectively, ti is the jth input
spike time from kth synapse, 75 and 7, are time constants, d(¢) is the Dirac delta
function. Since realizing delta function is not possible in computations, this
function is replaced with a square pulse function given bellow:

5.1 NEWSYNAPSE Function 36

1 0<t<ValidPeriod
P(t) = {

0 otherwise

Please refer to chapter 9 for more information about adding custom synapse
models to the library and also the structure of functions. This chapter continues
with description of basic synapse component and library items available for this
version.

5.1 NEWSYNAPSE Function

This is the main function for custom synapse model component definition.

5.1.1 Syntax

SynapseModel = newsynapse(ext_psp_fun , ext_psp_fun_param , int_psp_fun
int_psp_fun_param)

5.1.2 Input Arguments

Input Name Description

ext_psp_fun Function name for external PSP. Must be
a string. Available library PSP func-
tions are: ’alpha_fun_ext’, ’alpha_fun2_ext’,

‘delta_fun_ext’. Default value 1is ’al-
pha_fun_ext’ (external a—function).

ext_psp_fun_param Parameters for the external PSP function.
Enter 'def’ for default values.

int_psp_fun Function name for internal PSP. Must be
a string. Available library PSP func-
tions are: ’alpha_fun_int’, ’alpha_fun2_int’,

"delta_fun_int’. Default value is ’al-
pha_fun_int’ (internal a—function).

int_psp_fun_param Parameters for the internal PSP function.
Enter 'def’ for default values.

5.2 CHECKSYNAPSE Function 37

5.1.3 Output Object

The output object is a structure variable containing the fields listed below.

Field Name Description

External. ExtPSPFun Function name for external PSP.
External. ExtPSPFunParam Parameters for external PSP function.
Internal. IntPSPFun Function name for internal PSP.
Internal. IntPSPFunParam Parameters for internal PSP function.

5.1.4 Examples

1. A synapse model with following properties: external PSP is delta func-
tion with ValidPeriod = 1msec., internal PSP is a-fucntion2 with
7, = 20msec, 1,,, = 10msec.

SynapseModel = newsynapse('delta_fun_ext’ , 1, 'alpha_fun_int’, [20 , 10]);

5.2 CHECKSYNAPSE Function

This function checks a synapse object for errors and returns a message and a flag
indicating the condition of the object.

5.2.1 Syntax
[CheckMessage , CheckFlag] = checksynapse(SynapseModel)

5.2.2 Input Arguments
A synapse object.

5.2.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. ’OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 6

Adaptation Model

This chapter contains the description of the Adaptation component. Four essen-
tial parts of a adaptation model are:

1. Synaptic weight adaptation mechanism.
2. Transmission delay adaptation mechanism.
3. Threshold adaptation mechanism.

4. Model parameters adaptation mechanism.

Since this is the first release, there is no adaptation model in the library and
adaptation items will be added in next release.

Please refer to chapter 9 for more information about adding custom adaptation
models to the library and also the structure of functions. This chapter continues
with description of basic synapse component and library items available for this
version.

6.1 NEWADAPT Function

This is the main function for custom adaptation model component definition.

6.1.1 Syntax

AdaptModel = newadapt(adapt_fun_weight , adapt_fun_weight_param , adapt_fun_delay
. adapt_fun_delay_param , adapt_fun_threshold , adapt_fun_threhsold_param
adapt_fun_model , adapt_fun_model_param)

6.1 NEWADAPT Function

39

6.1.2 Input Arguments

Input Name

adapt_fun_weight

adapt_fun_weight_param

adapt_fun_delay

adapt_fun_delay_param

adapt_fun_threshold

Description

Function name for weight adaptation mech-
anism. Must be a string. Default value is
none’ (no adaptation).

Parameters for the weight adaptation func-
tion. Enter 'def’ for default values.

Function name for delay adaptation mech-
anism. Must be a string. Default value is
'none’ (no adaptation).

Parameters for the delay adaptation func-
tion. Enter ’def’ for default values.

Function name for threshold adaptation
mechanism. Must be a string. Default value
is 'none’ (no adaptation).

adapt_fun_threshold_paramParameters for the threshold adaptation

adapt_fun_model

adapt_fun_model_param

function. Enter ’def’ for default values.

Function name for model adaptation mech-
anism. Must be a string. Default value is
none’ (no adaptation).

Parameters for the model adaptation func-
tion. Enter 'def’ for default values.

6.1.3 Output Object

The output object is a structure variable containing the fields listed below.

6.2 CHECKADAPT Function

40

Field Name

Weight.AdaptFun

Weight. AdaptFunParam

Delay.AdaptFun

Delay. AdaptFunParam

Threshold.AdaptFun

Threshold.AdaptFunParam

Model. AdaptFun

Model.AdaptFunParam

6.1.4 Examples

Description

Function name for weight adaptation
mechanism.

Parameters for weight adaptation func-
tion.

Function name for delay adaptation
mechanism.

Parameters for delay adaptation func-
tion.

Function name for threshold adapta-
tion mechanism.

Parameters for threshold adaptation
function.

Function name for model adaptation
mechanism.

Parameters for model adaptation func-
tion.

1. An adaptation model with default values.

AdaptModel = newadapt;

6.2 CHECKADAPT Function

This function checks an adaptation object for errors and returns a message and
a flag indicating the condition of the object.

6.2.1 Syntax

[CheckMessage , CheckFlag] = checkadapt(AdaptModel)

6.2 CHECKADAPT Function 41

6.2.2 Input Arguments
An adaptation object.

6.2.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. ’OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 7

Simulation Model

This chapter contains the description of the Simulation component. The simula-
tion object contains information needed for a solver to compute the solution of
the BNN model.

7.1 NEWSIM Function

This is the main function for custom simulation model component definition.

7.1.1 Syntax

SimParam = newsim(stop_time , start_time , initial_cond , solver_type , solver_option ,
stop_fun , user_fun)

7.1 NEWSIM Function

43

7.1.2 Input Arguments

Input Name

stop_time

start_time

initial_cond

solver_type

solver_option

stop_fun

user_fun

Description

Simulation stop time. Must be greater than
zero and start time. Default value is 0 (no
simulation).

Simulation start time. Must be greater than
zero and less than stop time. Default value
is 0 (no start).

Initial condition of state variable. A vector
with the same size of the total state variables
of the network. Default value is 0.

MATLAB solver type selection. Must be
one of ’oded5’; 'ode23’, ’odelld’, ’odelbs’,
‘ode23s’, 'ode23t’, or 'ode23tb’. Refer to
MATLAB help for more information about
the solvers. Default value is 'ode45’.

MATLAB solver option. There is no option
in this release. Must be [] for this version.

User defined stop function (used to define
stopping criteria rather than stop time).
Must be a string. Default value is 'none’ (no
stop function).

User defined function (used to define func-
tions not included in the toolbox). Must be a
string. Default value is 'none’ (no user func-
tion).

7.1.3 Output Object

The output object is a structure variable containing the fields listed below.

7.2 CHECKSIM Function

44

Field Name
StopTime
StartTime
InitialCond
Solver
SolverOption
StopFun

UserFun

7.1.4 Examples

Description

Simulation stop time.
Simulation start time.
Simulation initial conditions.
Solver function.

Solver options.

Stop function.

User function.

1. A simulation model with following properties: start time = 0, stop time =
20, initial condition = 1 (note that when you enter a single value for initial
condition, the function will automatically generalize it for all other states).

SimParam = newsim(20, 0, 1);

7.2 CHECKSIM Function

This function checks a simulation object for errors and returns a message and a
flag indicating the condition of the object.

7.2.1 Syntax

[CheckMessage , CheckFlag] = checksim(SimParam)

7.2.2 Input Arguments

A simulation object.

7.2 CHECKSIM Function 45

7.2.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. ’OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 8

Input/Output Model

This chapter contains the description of the Input/Output component. This
modules defines how the model will interact with inputs and outputs.

8.1 NEWIOMODE Function

This is the main function for custom input/output model component definition.

8.1.1 Syntax

IOMode = newiomode(input_fun_name , input_spike_time , analog.input , auto_save ,
save_file_name , file_format)

8.1 NEWIOMODE Function

47

8.1.2 Input Arguments

Input Name

input_fun_name

input_spike_time

analog_input

auto_save

save_file_name

file_format

Description

Input function name. This function must
provide external analog current and spike
times of input channels. Must be a string.
Default value is 'none’.

Spike times of inputs. This value will be used
if input function name was 'none’. Must be
a cell array of the same size of the number
of spiking inputs. Each element of this cell
array is a vector containing spike times of
that input. Note that if there was an input
function name, the spike time outputs of this
function will be saved in this field. Default
value is 0.

Analog current input values. This value will
be used if input function name was 'none’.
Must be an array of the same size of the
number of analog inputs. Each element of
this array corresponds to the analog current
value of that input. Note that if there was
an input function name, the analog current
outputs of this function will be saved in this
field. Default value is 0.

Auto save option. If you want to save the
results automatically when simulation com-
pleted, set this variable value to 1, otherwise
0. You can specify the file name and file
format using next input arguments. Default
value is 0.

Save file name for auto save option. Must be
a string. This value can also have the relative
or absolute address. Default value is ’bnnet’.

Save file format for auto save option. Must
be a string. Only 'MAT’ is allowed in this
version.

8.2 CHECKIOMODE Function 48

8.1.3 Output Object

The output object is a structure variable containing the fields listed below.

Field Name Description

Input.InputFunName Input function name.
Input.InputSpikeTime Spike times of inputs.
Input.AnalogInput Analog current input values.
Output.SpikeTimes Neurons spike times. A cell array of the

same size of the number of neurons.

Output.States States values of network. Each column
of this matrix corresponds to one of the
states.

Output.Time Time vector. A vector containing the

time values of computations.

Output.AutoSave Auto save option.
Output.SaveFileName Auto save file name.
Output.FileFormat Auto save file format.

8.1.4 Examples

1. An input/output model with following properties: 2 spiking input with
spike times = {[2,4, 8]; [3, 10]}msec, 1 analog input = 2uA, auto save on,
and save file to the 'results’ directory with 'network’ file name.

IOMode = newiomode('none’ , {[2 4 8] ; [310]}, 2,1, 'results/network’);

8.2 CHECKIOMODE Function

This function checks an input/output object for errors and returns a message and
a flag indicating the condition of the object.

8.2 CHECKIOMODE Function 49

8.2.1 Syntax
[CheckMessage , CheckFlag] = checkiomode(IOMode)

8.2.2 Input Arguments

An input/output object.
8.2.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. ’OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 9
BNN Model

This chapter contains the description of the BNN model. Every BNN model must
has the following components:

1. An Architecture model object.
2. A Neuron model object.

3. A Synapse model object.

4. An Adaptation model object.
5. A Simulation model object.

6. An Input/Output model object.

9.1 NEWBNN Function

This is the main function for custom BNN model definition.

9.1.1 Syntax

net = newbnn(NetArch , NeuronModel , SynapseModel , AdaptModel , SimParam ,
[OMode)

9.1 NEWBNN Function 51

9.1.2 Input Arguments

Input Name Description

NetArch Architecture model object. Default is a de-
fault architecture object.

NeuronModel Neuron model object. Default is a default
neuron object.

SynapseModel Synapse model object. Default is a default
synapse object.

AdaptModel Adaptation model object. Default is a de-
fault adaptation object.

SimParam Simulation model object. Default is a default
simulation object.

IOMode Input/Output model object. Default is a de-
fault input/output object.

9.1.3 Output Object

The output object is a structure variable containing the fields listed below.

Field Name Description
Architecture Architecture model.
Neurons Neuron model.
Synapses Synapse model.
Adaptation Adaptation model.
Simulation Simulation model.
InputOutput Input/Output model.

9.1.4 Examples
1. A BNN model with default objects.

9.2 CHECKBNN Function H2

net = newbnn;

9.2 CHECKBNN Function

This function checks a BNN model for errors and returns a message and a flag
indicating the condition of the model. It uses previous object check functions.

9.2.1 Syntax
[CheckMessage , CheckFlag] = checkbnn(net)

9.2.2 Input Arguments
A BNN model.

9.2.3 Outputs
Output Name Description

CheckMessage A string containing the error condition of the object. "OK’
for no error situation

CheckFlag An integer for associated condition. 1 for no error situation.

Chapter 10

Simulate a BNN

This chapter explains how to simulate a BNN model build with previous func-
tions.

10.1 SIMBNN Function

This is the main function to simulate a BNN model.

10.1.1 Syntax

net = simbnn(net)
10.1.2 Input Arguments
Input Name Description

net A BNN model.

10.1.3 Output Object

The output object is the same as the input BNN model. The output fields would
have the results of the simulation.

10.1.4 Examples
1. Simulate a BNN model.

net = simbnn(net);

Chapter 11

Tools

This chapter contains some additional functions used for accessing and plotting
the results easily.

11.1 GETSTATES Function

This function returns solved state values of a particular neuron.

11.1.1 Syntax

states = getstates(net , neuron_no)

11.1.2 Input Arguments

Input Name Description
net A BNN model (after computations).
neuron_no Neuron number in the network. If you want

to get state values for all neurons, don’t in-
sert this argument

11.1.3 Output Object

State values in a vector for a single neuron or in a matrix for all neurons with
each column for a neuron.

11.2 GETSPIKES Function 55

11.1.4 Examples

1. Get state values for 2nd neuron.

states = getstates(net , 2);

2. Get state values for all neurons.

states = getstates(net);

11.2 GETSPIKES Function

This function returns spike times of a particular neuron.

11.2.1 Syntax

spike_time = getspikes(net , neuron_no)

11.2.2 Input Arguments

Input Name Description
net A BNN model (after computations).
neuron_no Neuron number in the network. If you want

to get spike time for all neurons, don’t insert
this argument

11.2.3 Output Object

Spike times in a vector for a single neuron or in a cell array for all neurons with
each elemnt for a neuron.

11.2.4 Examples

1. Get spike times for 2nd neuron.

spike_time = getspikes(net , 2);

2. Get spike times for all neurons.

spike_time = getspikes(net);

11.3 GETTIME Function 56

11.3 GETTIME Function

This function returns computation time vector.

11.3.1 Syntax

time = gettime(net)

11.3.2 Input Arguments

Input Name Description

net A BNN model (after computations).

11.3.3 Output Object

Time vector of computation.

11.3.4 Examples

1. Get time values.

time = gettime(net);

11.4 PLOTSTATES Function

This function plots solved state values of a particular neuron.

11.4.1 Syntax

plotstates(net , neuron_no)

11.4.2 Input Arguments

Input Name Description
net A BNN model (after computations).
neuron_no Neuron number in the network. If you want

to plot state values for all neurons, don’t in-
sert this argument

11.5 PLOTSPIKES Function 57

11.4.3 Output Object
A figure.

11.4.4 Examples

1. Plot state values for 2nd neuron.

plotstates(net , 2);

2. Plot state values for all neurons.

plotstates(net);

11.5 PLOTSPIKES Function

This function plots spike times of a particular neuron.

11.5.1 Syntax

plotspikes(net , neuron_no)

11.5.2 Input Arguments

Input Name Description
net A BNN model (after computations).
neuron_no Neuron number in the network. If you want

to plot spike times for all neurons, don’t in-
sert this argument

11.5.3 Output Object
A figure.

11.5.4 Examples

1. Plot spike times for 2nd neuron.

plotspikes(net , 2);

11.6 PLOTSPIKES2D Function 58

2. Plot spike times for all neurons.

plotspikes(net);

11.6 PLOTSPIKES2D Function

This function plots spike times of all neurons with a dot. Vertical axis will be
the neuron number and horizental axis will be time.

11.6.1 Syntax

plotspikes2d(net)

11.6.2 Input Arguments

Input Name Description

net A BNN model (after computations).

11.6.3 Output Object
A figure.

11.6.4 Examples
1. Plot spike times in 2D.

plotspikes2d(net);

Chapter 12

How to Add to Library

This chapter describes how to add models to the library using function templates.
To understand this issue, it’s necessary to illustrate the details of the simulator
program and other associated functions first.

12.1 Details of Simulator

SIMBNN is the main simulator program. The process of simulation in this function
has the following steps:

1.

2.

Checks the BNN model for errors using CHECKBNN function.

Initializes some internal variables. Sets the simulation current time to start
time.

Creates event (spike detection) function for the MATLAB ODE solver.

Generalizes initial conditions. If the size of initial condition vector does not
match with the total number of states in the BNN model, checks to see if
its size is the same as the number of states for a single neuron. If the check
result was true, it would repeat this initial condition vector for all other
neurons. Otherwise, if the original initial condition was a single value, the
function would make a vector for initial condition filled with this value for
all states in the network.

Starts the computation loop, by calling the MATLAB ODE solver with
following arguments: DEs function of the neuron model, current time, stop
time, initial condition, and event function. The solver starts to integrate
the DEs and stop whenever the computation time reaches to stop time or
an event is detected using spike detection function. At this time, the solver
stops the integration and returns states matrix, spike times, index of spiker
neuron, and computation time vector.

12.2 How to Add Neuron Model 60

6. The program stores new results in the proper output fields of BNN model
and sets updates current time with the final value of the time vector.

7. It then calls the reset function for post-spike generation processes with state
matrix and index of spiker neuron. This function must return new initial
conditions for next steps of integration.

8. The program calls adaptation functions to perform learning mechanisms
over adjustable parameters. The adaptation functions receive the BNN
model as input and must return the modified BNN model.

9. If there was any user defined or stop function, it calls them with BNN model
as input. User defined function must return a BNN model. Stop function
must return the new stop flag condition: 0 for continue and 1 for stop.

10. The program checks current time. If current time was not greater than stop
time and also stop flag was not equal to 1, then continues the simulation
by going to step 5, otherwise it goes to next step.

11. If the auto save option was selected, it saves the BNN model, and then
returns back the BNN model to the original program.

12.2 How to Add Neuron Model

To add a neuron model to the library, you can use the neuron_model_template.m
program from the template directory. To have a backup from the template, it is
recommended to copy this function with your model name and then modify its
contents according to the instructions bellow. Each neuron model function has
the DEs (or more exactly the ODEs) of that particular model. This function
takes current time (¢) and state vector (y) as input arguments and returns the
derivative of state variables (%). The general structure of a neuron model is
given by:

dy
dt
which y is the state vector, F(¢,y) is the internal dynamics, and I(t,y) is the
total external or internal dendritic current.
The template function is the same as the leaky integrate-and-fire model dis-
cussed earlier, except that it has help sections about how to modify the template
with your code. Follow these steps to create your model:

= F(t,y)+1(t,y) (12.1)

1. First of all take a copy of this file, rename it to 'my_model name’ (for
example ’int_fire2’). Also change the name of function at the first line from
'neuron_model _template’ to 'my_model name’.

12.3 How to Add Synapse Model 61

2. Put default parameters for your model at the specified section.

3. If you want to get other parameters rather than defaults from outside,
change these codes according to your model. Note that you must preserve
the parameters order here and outside to get the correct results. Another
point is that you can specify different parameters for each neuron by setting
model parameter in neuron object to a matrix containing parameters for
each neuron in a row (i.e. each column corresponds to one of parameters
and each row has the parameters for that neuron).

4. Put the DEs equations in the specified section. Use dotted arithmetic
operations if you have different parameters for different neurons.

5. Save your file.

There is a line of code in this template for dendritic currents calculations:
| = external_input(t , y) + internal_input(t , y);

These functions will be explained in next sections.

12.3 How to Add Synapse Model

To add a synapse model to the library, you can use the synapse_model_template.m
program from the template directory. To have a backup from the template, it is
recommended to copy this function with your model name and then modify its
contents according to the instructions bellow.

To gain more insight into the synapse models, let’s explain the procedure of
PSPs calculations. As stated before, the total dendritic input current to a neuron
is a summation of external and internal inputs. Each neuron model function must
have some functions (or a section in the same function) to calculate this value
for all neurons in the network. There are two predefined functions associated
with this problem in the toolbox: external_input and internal_input. These two
functions has the same structure, except that an additional section is available in
external_input for analog injection currents. The procedure of calculations in these
files is:

1. Initialization of variables.

2. Separates the spiking inputs from analog inputs (external_input function
only).

3. Checks for input file name. If there was such a function, then it calls
this function with ¢ and y as input arguments and gets analog input values

12.3 How to Add Synapse Model 62

together with input spike times in the same structure as stated in InputOut-
put chapter. If there was not any input function, then it reads the input
fields of BNN model.

If the size of the spike times cell array was equal to 1 and it does not
match with the total number of spiking inputs, the function automatically
generalizes this spike time to all other spiking inputs (external_input function
only).

If the size of the analog input array was equal to 1 and it does not match
with the total number of analog inputs, the function automatically gener-
alizes this analog value to all other analog inputs (external_input function
only).

The program then checks for PSP function name. If there was a PSP func-
tion, then it calls the PSP function with ¢, y, spike times, and transmission
delay values as input arguments. The PSP function must return a matrix
with a proper size. Each a;; element of this matrix corresponds to the
dendritic current value from jth source to ¢th neuron at that time.

The final step is the computation of weighted sum of total dendritic currents
for all neurons.

As seen from above the main role of a PSP function is to get the spike times
and to return the current value in an appropriate format. You can use any other
functions rather than external_input and internal_input, if the previous steps are not
suitable for you model.

To write a new PSP function you can use the template function. This function
is the same as the a-function PSP model for internal spikes discussed earlier,
except that it has help sections about how to modify the template with your
code. Follow these steps to create your model:

1.

First of all take a copy of this file, rename it to 'my_model_name’ (for
example ’int_fire2’). Also change the name of function at the first line from
‘'synapse_model_template’ to 'my_model name’.

Put default parameters for your model at the specified section.

If you want to get other parameters rather than defaults from outside,
change these codes according to your model. Note that you must preserve
the parameters order here and outside to get the correct results.

Put your PSP function in the specified section.

Save your file.

12.4 How to Add Adaptation Model 63

12.4 How to Add Adaptation Model

There is no template file for adaptation model, since there is no adaptation
mechanism available in this release. But as a general rule writing an adaptation
function is not a complicated task. This function must get the BNN model as
its input. Then it should modify the parameters, such as weights, according to
the learning algorithm. And at last stores them in the appropriate fields in the
BNN model and returns it as output argument. Next release will have adaptation
functions and templates.

Chapter 13

References

This chapter contains some useful references for models used in this toolbox.

1. Gerstner, W., Kistler, W. M. (2002) Spiking Neuron Model: Single Neuron,
Populations, and Plasticity Cambridge University Press.

2. Maass, W., Bishop, C. M. (1998) Pulsed Neural Networks MIT Press.

3. Northrop, R. B. (2000) Introduction to Dynamic Modeling of Neuro-
Sensory Systems CRC Press.

	Introduction
	What is BNN Toolbox?
	Overview and Features
	Current Features
	Future Outlook

	Installation Guide
	Requirements
	How to install?

	Support

	Basics of BNN
	Components of a BNN
	Architecture
	Neuron Model
	Synapse Model
	Adaptation Model
	Simulation Parameters
	Input/Output
	BNN Model
	Simulating BNN

	Summary

	Architecture Model
	NEWARCH Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWARCHFC Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWARCHFF Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWARCHGF Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWARCHLC Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWARCHLF Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKARCH Function
	Syntax
	Input Arguments
	Outputs

	Neuron Model
	NEWNEURON Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWNEURONIF Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWNEURONHH Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWNEURONFN Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWNEURONML Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWNEURONCANON Function
	Syntax
	Input Arguments
	Output Object
	Examples

	NEWNEURONIZ Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKNEURON Function
	Syntax
	Input Arguments
	Outputs

	Synapse Model
	NEWSYNAPSE Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKSYNAPSE Function
	Syntax
	Input Arguments
	Outputs

	Adaptation Model
	NEWADAPT Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKADAPT Function
	Syntax
	Input Arguments
	Outputs

	Simulation Model
	NEWSIM Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKSIM Function
	Syntax
	Input Arguments
	Outputs

	Input/Output Model
	NEWIOMODE Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKIOMODE Function
	Syntax
	Input Arguments
	Outputs

	BNN Model
	NEWBNN Function
	Syntax
	Input Arguments
	Output Object
	Examples

	CHECKBNN Function
	Syntax
	Input Arguments
	Outputs

	Simulate a BNN
	SIMBNN Function
	Syntax
	Input Arguments
	Output Object
	Examples

	Tools
	GETSTATES Function
	Syntax
	Input Arguments
	Output Object
	Examples

	GETSPIKES Function
	Syntax
	Input Arguments
	Output Object
	Examples

	GETTIME Function
	Syntax
	Input Arguments
	Output Object
	Examples

	PLOTSTATES Function
	Syntax
	Input Arguments
	Output Object
	Examples

	PLOTSPIKES Function
	Syntax
	Input Arguments
	Output Object
	Examples

	PLOTSPIKES2D Function
	Syntax
	Input Arguments
	Output Object
	Examples

	How to Add to Library
	Details of Simulator
	How to Add Neuron Model
	How to Add Synapse Model
	How to Add Adaptation Model

	References

