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Abstract
While models have reached superhuman per-
formance on popular question answering (QA)
datasets such as SQuAD, they have yet to
outperform humans on the task of question
answering itself. In this paper, we inves-
tigate what models are really learning from
QA datasets by evaluating BERT-based mod-
els across five popular QA datasets. We eval-
uate models on their generalizability to out-of-
domain examples, responses to missing or in-
correct information in datasets, and ability to
handle variations in questions. We find that
no single dataset is robust to all of our ex-
periments and identify shortcomings in both
datasets and evaluation methods. Following
our analysis, we make recommendations for
building future QA datasets that better evalu-
ate the task of question answering.

1 Introduction

Question answering (QA) through reading com-
prehension has seen considerable progress in re-
cent years. This progress is in large part due to
large-scale language models and the release of sev-
eral new datasets that have introduced impossible
questions (Rajpurkar et al., 2018), bigger scales
(Kwiatkowski et al., 2019), and different angles,
such as context (Choi et al., 2018; Reddy et al.,
2019) and multi-hop reasoning (Welbl et al., 2018;
Yang et al., 2018), to question answering.

At the time of writing this paper, models have
outperformed human baselines on the widely-used
SQuAD 1.1 and SQuAD 2.0 datasets, and datasets
made to be more challenging, such as QuAC, have
models 7 F1 points away from humans. Despite
these increases in F1 scores, we are still far from
saying question answering is a solved problem.

Concerns have been raised about how challeng-
ing QA datasets really are. Previous work has
found that simple heuristics can give good per-
formance on SQuAD (Weissenborn et al., 2017),

and successful SQuAD models lack robustness by
giving inconsistent answers (Ribeiro et al., 2019)
or being vulnerable to adversarial attacks (Jia and
Liang, 2017; Wallace et al., 2019).

If state-of-the-art models are excelling at test
sets but not necessarily solving the underlying task
of question answering, then our test sets are flawed.
To make further progress in the field, we need to
understand if models have learned the correct task
and address issues with the way current datasets
test model performance. In this work, we analyze
QA datasets by asking three questions: (1) Does
performance on individual datasets generalize to
new datasets? (2) Are models learning reading
comprehension for question answering?, and (3)
How well do models handle question variations?

To answer these questions, we evaluate five QA
datasets by fine-tuning BERT-based models and
conducting six experiments. We find that (1) High
performance on individual test sets does not gen-
eralize well outside of simple heuristics like word
overlaps, (2) Removing or corrupting parts of the
question or answer does not always harm model
performance, showing that models can perform
well without learning reading comprehension, and
(3) No dataset fully prepares models to handle ques-
tion variations like filler words or negation. Based
on these findings, we make recommendations on
how to create and evaluate new datasets that better
test a models performance in question answering.

2 Datasets

We compare five datasets in our experiments:
SQuAD 2.0, TriviaQA, Natural Questions, QuAC,
and NewsQA. All of these datasets treat question
answering as a reading comprehension task where
the question is about a document and the answer is
either extracted as a span of text or labeled unan-
swerable. To consistently compare models, we
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convert all datasets into a SQuAD 2.0 JSON for-
mat.1 Since most datasets have a hidden test set,
we evaluate models on their dev sets2.

The following sections describe each dataset and
any modifications we made to run our experiments.
Table 1 shows a comparison of the datasets in terms
of the average number of words in questions, con-
texts, and answers.

Question Context Answer

SQuAD 10 120 3
TriviaQA 15 746 2

NQ 9 96 4
QuAC 7 395 14

NewsQA 8 709 4

Table 1: Comparison of question, context, and answer
lengths by average number of words

SQuAD 2.0 (Rajpurkar et al., 2018) consists of
150K question-answer pairs on Wikipedia articles.
To create SQuAD 1.1, crowd workers wrote ques-
tions about a Wikipedia paragraph and highlighted
the answer (Rajpurkar et al., 2016). SQuAD 2.0
includes an additional 50K plausible but unanswer-
able questions.

TriviaQA (Joshi et al., 2017) includes 95K
question-answer pairs from trivia websites. The
questions were written by trivia enthusiasts and the
evidence documents were retrieved by the authors
retrospectively. We use the variant of TriviaQA
where the documents are Wikipedia articles.

Natural Questions (NQ) (Kwiatkowski et al.,
2019) consists of 300K questions from the Google
search engine logs. For each question, a crowd
worker highlighted a long and short answer, if pos-
sible, in a Wikipedia page. We use the subset of NQ
with a long answer and frame the task as finding the
short answer span in the long answer paragraph.

QuAC (Choi et al., 2018) contains 100K ques-
tions. To create QuAC, a student crowd worker
asked questions about a Wikipedia article to a
teacher crowd worker, who answered by select-
ing a text span. To standardize training, we do
not model contextual information, but we include
QuAC to see how models trained without context
handle context-dependent questions.

1The formatted datasets and code to reproduce our experi-
ments will be available on GitHub after double-blind review.

2As a result, we will refer to the dev sets as test sets for the
remainder of this paper.

NewsQA (Trischler et al., 2017) is made up of
100K questions on 10K CNN articles. One set of
crowd workers wrote questions based on a headline
and summary, and a second set of workers found
the answer in the article. To match SQuAD 2.0,
we reintroduce unanswerable questions that were
excluded during training in the original paper.

3 Model

Hyperparameter Value

Batch Size 24
Learning Rate 3e-5
Epochs 2
Max Seq Length 384
Doc Stride 128

Table 2: Hyperparameter values for fine-tuning BERT

All models are initialized from a pre-trained
BERT-Base uncased model3. For each dataset, we
fine-tune a model on its training set using Devlin
et al. (2019)’s default hyperparameters shown in
Table 2. We evaluate each model with the SQuAD
2.0 evaluation script (Rajpurkar et al., 2018).

Dataset Reference Ours

SQuAD 76.3 (Liu et al., 2019) 75.6
TriviaQA 56.3 (Yang et al., 2019) 58.7
NQ 52.7 (Alberti et al., 2019) 73.5
QuAC 54.4 (Qu et al., 2019) 33.3
NewsQA 66.8 (Takahashi et al., 2019) 60.1

Table 3: Comparison to previously reported F1 scores

In Table 3, we provide a comparison between
our models and previously published BERT-based
model results. The significant differences are when
we make modifications to match SQuAD. We sim-
plified NQ by removing the long answer identifi-
cation task and framed the short answer task in
a SQuAD format, so we see higher results than
the NQ BERT baseline. For QuAC, we stripped
all context-related fields and treated each exam-
ple as an independent question, so we see lower
results than models built on the full dataset. For
NewsQA, we reintroduced impossible questions to
follow SQuAD 2.0, resulting in lower performance.

3https://github.com/google-research/
bert#pre-trained-models



Evaluated on

SQuAD TriviaQA NQ QuAC NewsQA Avg ∆

SQuAD 75.6 46.7 48.7 20.2 41.1 -17.2

TriviaQA 49.8 58.7 42.1 20.4 10.5 -29.9
Fi

ne
-t

un
ed

on
NQ 53.5 46.3 73.5 21.6 24.7 -20.4

QuAC 39.4 33.1 33.8 33.3 13.8 -36.9

NewsQA 52.1 38.4 41.7 20.4 60.1 -22.2

Table 4: F1 scores of each fine-tuned model evaluated on each test set

We accept these drops in performance since we
are interested in comparing changes to a baseline
rather than achieving state-of-the-art results.

4 Experiments

In this section, we discuss the experiments run to
evaluate how well QA datasets evaluate the task
of question answering. All results are reported
as F1 scores since they are correlated with Exact
Match scores and are more forgiving to sometimes
arbitrary cutoffs of answers (for example, we prefer
to give some credit to a model for selecting Charles
III even if the answer was King Charles III).

4.1 Does performance on individual datasets
generalize to new datasets?

For our first experiment, we evaluate the gener-
alizability of models on out-of-domain examples.
While most work in QA has focused on evaluating
a datasets own test set, generalizability is an im-
portant feature for models to learn. If we cannot
get good, generalizable performance on research
datasets, we will struggle to expand to the vari-
ety of questions a QA system can face in a real-
world setting. Indeed several recent papers have
focused on generalizability by evaluating transfer-
ability across datasets (Talmor and Berant, 2019;
Yatskar, 2019), testing generalizability to out-of-
domain data (Fisch et al., 2019), or building cross-
dataset evaluation methods (Dua et al., 2019).

We test generalizability by fine-tuning models on
each of the datasets and evaluating them against all
five test sets without any further fine-tuning. The
results for each model are reported as F1 scores
in Table 4. The rows show a single models per-
formance across all five datasets, and the columns
show the performance of all the models on a single
dataset. The model-on-self baseline is indicated
in bold. The final column shows the average dif-

Figure 1: A t-SNE visualization of test set questions

ference between each model’s performance on a
dataset and the model-on-self baseline.

All of the models take a considerable F1 drop
when they are evaluated on a different dataset, so
performance on an individual dataset does not gen-
eralize well across datasets. This finding confirms
results found in previous work on different mixes
of datasets (Talmor and Berant, 2019; Yogatama
et al., 2019). However there is variation in how the
models perform, both in terms of F1 drop across
datasets, and performance on a single dataset across
models. We investigate these differences further by
looking into test set similarity and test set difficulty.

4.1.1 Test Set Similarity
The SQuAD model has the lowest average F1 drop
across all datasets with a delta of -17.2, while
QuAC has the highest with -36.9. This suggests
that the SQuAD model is better prepared to answer
questions from out-of-domain datasets. We hypoth-
esize this is because of test set similarity. If two
test sets are similar, a model that is successful on
one will likely be successful on the other. As test
sets decrease in similarity, we can expect model
generalizability to deteriorate.
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Figure 2: A bar graph of how many questions in each
dataset are answered by 0, 1, 2, 3, 4, or 5 models

To visualize similarity, we map the questions
from the test sets to a vector space. We calculate
fixed length vectors for each question using bert-
as-a-service4 with a pretrained BERT-Base model
as the sentence encoder and extracting from the
second-to-last layer. We get 768-dimension vectors
for each question and use t-SNE (Maaten and Hin-
ton, 2008) to produce a lower dimensional graph.

Figure 1 is a t-SNE visualization of the test set
questions from all five datasets. Each point repre-
sents a question, and the five colors represent the
five datasets. SQuAD and NQ overlap with most
of the datasets, which can explain why the SQuAD
and NQ models have lower F1 losses. QuAC and
NewsQA are further away from the other distribu-
tions and have worse generalizability. TriviaQA
and NewsQA, for example, have very little overlap
and TriviaQA only achieves a 10.5 F1 score on
NewsQAs test set.

Overall, this visualization supports the hypothe-
sis that good generalization across datasets can be
explained by test set similarity.

4.1.2 Test Set Difficulty
As seen in Table 4, models score up to 53.5 F1
points on SQuAD without seeing SQuAD exam-
ples before, while models do not score above 21.6
F1 points on QuAC without seeing QuAC exam-
ples. This suggests some test sets are easier than
others. To quantify this, we calculate what propor-
tion of each test set can be correctly answered by

4https://github.com/hanxiao/
bert-as-service

Figure 3: More models correctly answer answerable
questions if they have higher question-context overlap.

Figure 4: More models correctly answer impossible
questions if they have lower question-context overlap.
NewsQA has four bars since all impossible NewsQA
questions were correctly answered by at least 1 model.

how many models. This data is represented as a bar
graph in Figure 2. Each bar represents one dataset,
and the segments show how much of the test set is
answered correctly by 0 to 5 of the models.

We consider questions easier if more models cor-
rectly answer them. The figure shows that QuAC
and NewsQA are more challenging test sets and
contain a higher proportion of questions that are an-
swered by 0 or 1 model. In contrast, more than half
of SQuAD and NQ and almost half of TriviaQA
can be answered correctly by 3 or more models.

While difficult questions pose a challenge for
QA models, too many easy questions inflate a mod-
els performance. What makes a question easy?
We identified a trend between difficulty of a ques-
tion and the overlap between the question and the
context. We measured overlap as the number of



Experiment Question Answer Text Answer Start

Original Who was the Norse leader Rollo 308
Random Label Who was the Norse leader succeeding 721
Shuffled Context Who was the Norse leader Rollo 480
Incomplete (first half) Who was Rollo 308
Incomplete (first word) Who Rollo 308
Filler word Who really was the Norse leader Rollo 308
Negation Who wasn’t the Norse leader -1

Table 5: Examples of how question-answer pairs were modified in each experiment

words that appeared in both the question and the
context divided by the number of words in the ques-
tion. For answerable questions, Figure 3 shows that
more models return correct answers when there is
higher average overlap. For impossible questions,
Figure 4 shows that fewer models return correct
answers when there is higher average overlap. This
suggests that the models are good at identifying
answers when the answer appears in a context sen-
tence that is similar to the question. In fact, they
can over-rely on this strategy and return answers to
impossible questions when there is high question-
context overlap even when no answer exists.

These results show that identifying overlap is a
method models are able to exploit even when the
question is out-of-domain. Reducing the number of
high overlap questions in a dataset can create more
challenging datasets and better test more complex
strategies for reading comprehension.

4.2 Are models learning reading
comprehension for question answering?

State-of-the-art models get good performance on
QA datasets. But does good performance mean that
models are learning reading comprehension? Or
are they able to cheat and take shortcuts to arrive at
the same answers? We explore this by performing
three dataset ablation experiments with random la-
bels, shuffled contexts, and incomplete questions.
If models are able to pass test sets even with incor-
rect or missing information, then the models are
likely not learning the task of reading comprehen-
sion. The three experiments and their results are
discussed in the next sections.

4.2.1 Random Labels
A robust model should withstand some amount
of noise at training time to offset annotation error.
However if a model can perform well even with

% of Random Labels

Dataset Baseline 10% 50% 90%

SQuAD 78.5 77.1 73.9 32.1
TriviaQA 46.8 36.6 10.9 0.0
NQ 70.6 68.1 60.5 19.4
QuAC 20.3 16.4 1.8 0.3
NewsQA 56.3 50.8 30.2 2.0

Table 6: F1 scores of answered questions decrease as
models are fine-tuned on increasingly noisy data.

a high level of noise, we should be wary of what
the model has learned. In our first dataset ablation
experiment, we evaluated how various amounts of
noise at training time affected model performance.

To introduce noise to the training sets, we ran-
domly selected 10%, 50%, or 90% of the training
examples that were answerable and updated the
answer to a random string from the same context
and of the same length as the original answer. We
ensured that the random answer contained no over-
laps with the original answer. For simplicity, we
did not alter impossible examples. An example of
a random label is in the second row of Table 5.

We fine-tuned new models on increasingly noisy
training sets and evaluated them on the original
clean test sets. The results are in Table 6 in terms
of F1 scores and reported only for answerable ques-
tions. On training sets where 10% of the examples
have random labels, all of the models see a drop
in F1 scores. SQuAD, NQ, and NewsQA achieve
over 90% of their baseline score, showing robust-
ness to a reasonable level of noise. TriviaQA and
QuAC take larger F1 hits (achieving only 78% and
81% of their baselines), suggesting that they are
less robust to this type of noise.

As the amount of noise increases, most F1 scores



drop to nearly 0. SQuAD and NQ, however, are
suspiciously robust even when 90% of their train-
ing examples are random. SQuAD achieves 41%
of its baseline and NQ achieves 27% of its baseline
with training sets that are 90% noise. Although the
SQuAD and NQ models achieve high F1 scores
on their test sets, this shows that parts of the test
sets are answerable without needing to learn read-
ing comprehension from correct examples in the
training set.

4.2.2 Shuffled Context

Dataset Baseline Shuffled Context

SQuAD 75.6 70.5
TriviaQA 58.7 38.7
NQ 73.5 64.5
QuAC 33.3 32.4
NewsQA 60.1 48.2

Table 7: F1 scores decrease, but not dramatically, on
test sets with shuffled context sentences.

Written text usually follows a logical structure,
so we would expect reading comprehension tasks
to rely on a structure where facts are presented in
a meaningful order. Do models exploit this struc-
ture, or do they perform just as well with randomly
arranged sentences? Our second dataset ablation
experiment investigates how models perform when
the sentences in the context are shuffled.

For each context paragraph in the test set, we
split the context by sentence, randomly shuffled
the sentences, and rejoined the sentences into a
new paragraph. The original answer text remained
the same, but the answer start token was updated
by locating the correct answer text in the shuffled
context. An example is in the third row of Table 5.

We used our models fine-tuned on the original
training sets and evaluated on the test sets with shuf-
fled contexts. The results are in Table 7. TriviaQA
sees the largest drop in performance, achieving
only 66% of its baseline, followed by NewsQA
with 80% of its baseline. SQuAD and QuAC, on
the other hand, get over 93% of their original base-
lines even with randomly shuffled contexts. Trivi-
aQA and NewsQA have longer contexts, with an
average of over 700 words, and so shuffling longer
contexts seems more detrimental. However these
results show that for many questions, models do not
need to learn content structure to correctly predict

the answer, and sentence position does not seem to
play much of a role.

4.2.3 Incomplete Input

First First
Dataset Baseline Half Word NER

SQuAD 75.6 36.4 22.8 30.0
TriviaQA 58.7 45.8 31.8 25.2
NQ 73.5 61.4 50.3 35.9
QuAC 33.3 25.2 22.4 17.2
NewsQA 60.1 43.6 26.3 11.3

Table 8: F1 scores decrease on test sets with incomplete
input, but models can work with as little as one word.

QA dataset creators and their crowd workers
spend considerable effort hand-crafting questions
that are meant to challenge a models ability to un-
derstand language. But are models using the ques-
tions? In previous work, Agrawal et al. (2016)
found that a Visual Question Answering (VQA)
model could get good performance on the test set
with just half the original question. We applied
Agrawal et al. (2016)’s approach of using incom-
plete questions to our datasets.

We created two variants of each test set: one con-
taining only the first half of each question, and one
containing only the first word of each question. The
answer expectations were not changed. Examples
are in the fourth and fifth rows of Table 5.

We evaluated models fine-tuned on the original
training set on the incomplete test sets. The results
are in the First Half and First Word columns of
Table 8. F1 scores decrease on test sets with in-
creasingly incomplete input, but surprisingly, all of
the models can correctly predict examples with as
little as the first word. In the most extreme case,
NQ achieves 68% of its baseline F1 score with only
the first word. These results show that not all ques-
tions in test sets require full question understanding
for the model to make correct predictions.

To test how this is possible, we create a naive
named entity recognition (NER) baseline using
spaCy5 to see how biased the datasets are at select-
ing the first entity of a given type. If the sentence
started with who, we returned the first person en-
tity in the context, for when, we returned the first
date, for where, the first location, and for what, the
first organization, event, or work of art. The results

5https://spacy.io



are reported in the NER column of Table 4. With
the exception of NewsQA, we are able to achieve
over 40% of the baseline performance on all other
datasets with an NER system that does not do any
reading comprehension.

4.3 How well do models handle question
variations?

The previous section found that models can per-
form well on test sets even as seemingly important
features for question answering are stripped from
datasets. This section considers the opposite prob-
lem: Can models remain robust as features are
added to datasets? To analyze this, we run two ex-
periments where we add filler words and negation
to test set questions.

4.3.1 Filler Words

Dataset Baseline Filler Words

SQuAD 75.6 69.5
TriviaQA 58.7 56.5
NQ 73.5 67.6
QuAC 33.3 31.2
NewsQA 60.1 54.8

Table 9: F1 scores slightly decrease on test sets where
a filler word is added to the question.

If a QA model is understanding questions, it
should handle semantically equivalent questions
equally well. While previous works have shown
poor performance on QA datasets with paraphrased
questions (Ribeiro et al., 2018; Gan and Ng, 2019),
we take an even simpler approach of introducing
filler words that do not affect the rest of the question
and test the robustness of the models.

For each question in the test set, we randomly
added one of three filler words (really, definitely,
or actually) before the main verb, as identified by
spaCy’s POS tagger. An example is shown in the
sixth row of Table 5. The answer expectations were
not changed.

Table 9 shows the results of models fine-tuned
on their original training sets and evaluated on their
filler word test sets. All models drop between 2 to
5 F1 points. Although these drops do not seem like
much, these results show that even such a naive ap-
proach can hurt performance. It is no surprise that
more sophisticated paraphrases of questions cause
models to fail. The SQuAD model in particular

had better performance when 50% of the training
set was randomly labeled (73.9) than when filler
words were added to the test set (69.5), suggesting
that some models have learned to become robust to
less consequential features.

4.3.2 Negation

Negative
Dataset Baseline Negative on Original

SQuAD 75.6 97.9 2.0
TriviaQA 58.7 55.5 42.0
NQ 73.5 40.0 68.9
QuAC 33.3 70.7 16.1
NewsQA 60.1 24.3 52.3

Table 10: SQuAD outperforms other models on test
sets with negative questions.

Negation is an important grammatical construc-
tion for QA systems to understand. While negative
questions are less common than positive questions,
they can be more damaging. After all, giving the
same answer to a question and its negative (Who
invented the telescope? vs. Who didnt invent the
telescope?) can frustrate or mislead users. We
evaluated how sensitive models are to negation in
questions. In particular, we tested if models under-
stand negation, or if they skip negative words and
continue to provide the original answer.

We negated every question in the test set by map-
ping common verbs (i.e. is, did, has) to their con-
tracted negative form (i.e. isn’t, didn’t, hasn’t) or
by inserting never before the main verb of the sen-
tence, as identified by spaCys POS tagger. We
used never for the sake of simplicity, since not of-
ten requires an auxiliary and a verb tense change
in English. The expected answer of all the nega-
tive questions were changed to be impossible. An
example is in the last row of Table 5.

We used the models fine-tuned on their original
training sets and evaluated them on the negated test
sets. The results are in Table 10. The Baseline col-
umn shows the results of the model on the original
test set. The Negative column shows the results
of the model on the negative test set expecting no
answer as the correct prediction. The Negative on
Original column shows how often the model re-
turns the original answer ignoring the negation. We
see that SQuAD outperforms all the other models
in both correctly not answering negative questions



and giving its original answer when given a neg-
ative question less than 3% of the time. Other
models return the original answer to the negative
question between 48% and 94% of the time.

% of
Dataset n’t never impossible

SQuAD 0.85 0.89 0.05
TriviaQA 0.31 0.48 0.004
NQ 0.37 0.34 0.009
QuAC 0.17 0.17 0.002
NewsQA 0.14 0.06 0.009

Table 11: The fraction of questions in the training set
including n’t or never that are impossible. The final col-
umn shows of impossible questions, how many include
n’t or never

Does the SQuAD model understand negation,
or is this a sign of bias? The first two columns in
Table 11 show how often a question containing nt
or never was impossible in the training set. SQuAD
has a high bias, with 85% of questions containing
n’t and 89% of questions containing never being
impossible. The final column in Table 11 shows
that 5% of impossible questions in SQuAD contain
n’t or never, which is a higher proportion than other
datasets. SQuADs impressive performance then
can be attributed to a bias in the dataset. These
results find that no dataset adequately prepares a
model to understand negation.

5 Related Work

Our work is inspired by recent trends in NLP to
evaluate generalizability and probe what a model
has learned. In terms of generalizability, prior work
has been done by Yogatama et al. (2019) who eval-
uated a SQuAD 1.1 model across four datasets,
including TriviaQA and QuAC. Talmor and Be-
rant (2019) performed a more comprehensive test
across ten QA datasets, including SQuAD 1.1,
TriviaQA, and NewsQA. And most recently, the
MRQA 2019 shared task (Fisch et al., 2019) used
different datasets for training (including SQuAD
1.1, TriviaQA, NQ, and NewsQA), development,
and testing to evaluate transferability. In our work,
we extend the work on generalizability by including
impossible questions and more closely analyzing
the related topics of test set similarity and difficulty.

Across different fields in NLP, previous work on
probing what a model has learned has found that

state-of-the-art models can get good performance
on incomplete input (Agrawal et al., 2016; Niven
and Kao, 2019), under-rely on important words,
(Mudrakarta et al., 2018), and over-rely on sim-
ple heuristics (McCoy et al., 2019). In question
answering, researchers have found that SQuAD
is vulnerable to adversarial attacks (Jia and Liang,
2017; Wallace et al., 2019) and is not robust to para-
phrases (Ribeiro et al., 2018; Gan and Ng, 2019).
Our work continues exploring what a QA model
has learned by comprehensively testing multiple
QA datasets against a variety of attacks.

6 Conclusions

In this work, we compared five QA datasets across
six tasks and found that even with high F1 scores,
many models failed to learn generalizability, ex-
pected responses to incorrect or missing data, or
the ability to handle variations. These findings re-
veal shortcomings in both the datasets and current
evaluation methods. Based on our work, we make
the following recommendations to researchers who
create or evaluate QA datasets:

• Test for generalizability: Models are more
valuable to real-world applications if they gen-
eralize. When releasing a new QA model,
report performance across all relevant QA
datasets without further fine-tuning.

• Challenge the models: Evaluating on too
many easy questions can inflate our under-
standing of what a model has learned. Calcu-
late and discard questions that can be solved
trivially by high overlap or extracting the first
named entity.

• Be wary of cheating: Good performance
does not mean good understanding. Probe
datasets by adding noise, shuffling contexts,
or providing incomplete input to ensure mod-
els arent taking shortcuts.

• Include variations: Language is infinite, so
we should prepare models to handle a vari-
ety of questions. Consider adding variations
such as filler words or negation to existing
questions to evaluate how well models have
understood a question.

• Standardize dataset formats: When creat-
ing new datasets, consider following a stan-
dardized format, such as SQuAD, to make
cross-dataset evaluations simpler.
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