
DEFactor: Differentiable Edge
Factorization-based Probabilistic Graph

Generation

Rim Assouel
Mila, Université de Montréal, QC

Benevolent.AI, London, UK
rim.assouel@umontreal.ca

Mohamed Ahmed
Benevolent.AI, London, UK

mohamed.ahmed@benevolent.ai

Marwin H Segler
Benevolent.AI, London, UK

marwin.segler@benevolent.ai

Amir Saffari
Benevolent.AI, London, UK

amir.saffari@benevolent.ai

Yoshua Bengio∗
Mila, Université de Montréal, QC

yoshua.bengio@mila.quebec

Abstract

Generating novel molecules with optimal properties is a crucial step in many
industries such as drug discovery. Recently, deep generative models have
shown a promising way of performing de-novo molecular design. Although
graph generative models are currently available they either have a graph
size dependency in their number of parameters, limiting their use to only
very small graphs or are formulated as a sequence of discrete actions needed
to construct a graph, making the output graph non-differentiable w.r.t
the model parameters, therefore preventing them to be used in scenarios
such as conditional graph generation. In this work we propose a model for
conditional graph generation that is computationally efficient and enables
direct optimisation of the graph. We demonstrate favourable performance
of our model on prototype-based molecular graph conditional generation
tasks.

1 Introduction

We address the problem of learning probabilistic generative graph models for tasks such as
the conditional generation of molecules with optimal properties. More precisely we focus on
generating realistic molecular graphs, similar to a target molecule (the prototype).

The main challenge here stems from the discrete nature of graph representations for molecules;
which prevents us from using global discriminators that assess generated samples and back-
propagate their gradients to guide the optimisation of a generator. This becomes a bigger
hindrance if we want to either optimise a property of a molecule (graph) or explore the
vicinity of an input molecule (prototype) for conditional optimal generation, an approach
that has proven successful in controlled image generation [1, 2].

∗CIFAR Senior Fellow

Preprint. Work in progress.

ar
X

iv
:1

81
1.

09
76

6v
1

 [
cs

.L
G

]
 2

4
N

ov
 2

01
8

(a) The full autoencoder (step 1 to 4)

(b) Expanding the steps (3 for the LSTM and 4 for the factorization and node
decoding) of the generator G of the autoencoder

(c) The conditional setting a discriminator D that assesses the outputs and gives
its feedback to the generator G. Lrec (resp. Lcond) refers to the reconstruction
(resp. conditional) loss described in section 3.3.

Figure 1: Overview of our molecule autoencoding ((a) and (b)) and conditional generation
(c) process.

Several recent approaches aim to address this limitation by performing indirect optimisation [3,
4, 8]. You et al. [4] formulate the molecular graph optimisation task in a reinforcement
learning setting, and optimise the loss with policy gradient [9]. However policy gradient tends
to suffer from high variance during training. Kang and Cho [10] suggest a reconstruction-
based formulation which is directly applicable to discrete structures and does not require
gradient estimation. However, it is limited by the number of samples available. Moreover,
there is always a risk that the generator simply ignores the part of the latent code containing
the property that we want to optimise. Finally, Jin et al. [3] apply Bayesian optimisation to
optimise a proxy (the latent code) of the molecular graph, rather than the graph itself.

In contrast, Simonovsky and Komodakis [11] and De Cao and Kipf [26] have proposed
decoding schemes that output graphs (adjacencies and node/edge feature tensors) in a
single step, and so are able to perform direct optimisation on the probabilistic continuous
approximation of a graph. However, both decoding schemes make use of fixed size MLP
layers which restricts their use to very small graphs of a predefined maximum size.

Our approach (DEFactor) depicted in Figure 1 aims to directly address these issues with
a probabilistic graph decoding scheme that is end-to-end differentiable, computationally
efficient w.r.t the number of parameters in the model and capable of generating arbitrary
sized graphs (section 3). We evaluate DEFactor on the task of constrained molecule property
optimisation [3, 4] and demonstrate that our results are competitive with recent results.

2

2 Related work

Lead-based Molecule Optimisation: The aim here is to obtain molecules that satisfy
a target set of objectives, for example activity against a biological target while not being
toxic or maintaining certain properties, such as solubility. Currently a popular strategy is to
fine-tune an pretrained generative model to produce/select molecules that satisfy a desired
set of properties [12].
Bayesian optimisation is proposed to explore the learnt latent spaces for molecules in [13],
and is shown to be effective at exploiting feature rich latent representations [14, 15, 3]. In
[16, 8] sequential graph decoding schemes whereby conditioning properties can be added to
the input are proposed. However these approaches are unable to perform direct optimisation
for objectives. Finally [4] reformulates the problem in a reinforcement learning setting,
and objective optimisation is performed while keeping an efficient sequential-like generative
scheme [17].

Graph Generation Models: Sequential methods to graph generation [17, 8, 4, 16] aim
to construct a graph by predicting a sequence of addition/edition actions of nodes/edges.
Starting from a sub-graph (normally empty), at each time step a discrete transition is
predicted and the sub-graph is updated. Although sequential approaches enable us to
decouple the number of parameters in models from the the maximum size of the graph
processed, due to the discretisation of the final outputs, the graph is still non-differentiable
w.r.t. to the decoder’s parameters. This again prevents us from directly optimising for the
objectives we are interested in.
In contrast to the sequential process [26, 11] reconstruct probabilistic graphs. These methods
however make use of fixed size MLP layers when decoding to predict the graph adjacency and
node tensors. This however limits their use to very small graphs of a pre-chosen maximum
size. They therefore restrict study and application to small molecular graphs; a maximum
number of 9 heavy atoms, compared to approximately 40 in sequential models.
We propose to tackle these drawbacks by designing a graph decoding scheme that is:

• Efficient: so that the number of parameters of the decoder does not depend on a
fixed maximum graph size.

• Differentiable: in particular we would like the final graph to be differentiable w.r.t
the decoder’s parameters, so that we are able to directly optimise the graph for
target objectives.

3 DEFactor

Molecules can be represented as graphs G = (V,E) where atoms and bonds correspond to
the nodes and edges respectively. Each node in V is labeled with its atom type which can be
considered as part of its features. The adjacency tensor is given by E ∈ {0, 1}n×n×e where
n is the number of nodes (atoms) in the graph and e is the number of possible edge (bond)
types. The node types are represented by a node feature tensor N ∈ {0, 1}n×d which is
composed of several one-hot-encoded properties.

3.1 Graph Construction Process

Given a molecular graph defined as G = (N,E) we propose to leverage the edge-specific
information propagation framework described in [18] to learn a set of informative an embed-
ding from which we can directly infer a graph. Our graph construction process is composed
of two parts:

• An Encoder that in
– step 1 performs several spatial graph convolutions on the input graph, and in
– step 2 aggregates those embeddings into a single graph latent representation.

3

• A Decoder that in

– step 3 autoregressively generates a set of continuous node embeddings condi-
tioned on the learnt latent representation, and in

– step 4 reconstructs the whole graph using edge-factorization.

Figure 1 (a) and (b) provides a summary of those 4 steps.

Steps 1 and 2: Graph Representation Learning. We use the Graph Convolutional
Network (GCN) update rule [19] to encode the graph. Each node embedding can be written
as a weighted sum of the edge-conditioned information of its neighbors in the graph. Namely
for each l-th layer of the encoder, the representation is given by:

H l = σ(
∑
e

[D−
1
2

e EeD
− 1

2
e H l−1W l

e] +H l−1W l
s) (1)

where Ee is the e-th frontal slice of the adjacency tensor, De the corresponding degree tensor
and W l

e and W l
s are learned parameters of the layer.

Once we have the node embeddings we aggregate them to obtain a fixed-length latent
representation of the graph. We propose to parametrize this aggregation step by an LSTM
and we compute the graph latent representation by a simple linear transformation of the
last hidden state of this Aggregator:

z = gagg(feLSTM ({HK})). (2)

Because the use of an LSTM makes aggregations permutation dependant, Like [23], we
adapt the aggregator using randomly permuted sets of embeddings and empirically validated
that this did not affect the performance of the model significantly.

In the subsequent steps we are interested in designing a graph decoding scheme from the
latent code that is both scalable and powerful enough to model the interdependencies between
the nodes and edges in the graph.

Step 3: Autoregressive Generation. We are interested in building a graph decoding
scheme that models the nodes and their connectivity (represented by continuous embeddings
S) in an autoregressive fashion. This is in contrast to [11, 26], where each node and edge is
conditionally independent given the latent code z. In practice this means that every detail
of the interdependencies within the graph have to be encoded in the latent variable. We
propose to tackle this drawback by autoregressive generation of the continuous embeddings
s = [s0, s1, ..., sn] for n nodes. More precisely we model the generation of node embeddings
such that:

p(s|z) =
n∏
i=1

p(si|s<i, z). (3)

In our model, the autoregressive generation of embeddings is parametrized by a simple Long
Short-Term Memory (LSTM, [24]) and is completely deterministic such that at each time
step t the LSTM decoder takes as input the previously generated embeddings and the latent
code z which captured node-invariant features of the graph. Each embedding is computed
as a function of the concatenation of the current hidden state and the latent code z such
that:

ht+1 = fdLSTM (gin([z, st]), ht) (4)
st+1 = fembed([ht+1, z]), (5)

where fdLSTM corresponds to the LSTM recurrence operation and gin and fembed are
parametrized as simple MLP layers to perform nonlinear feature extraction.

4

Step 4: Graph Decoding from Node Embeddings. As stated previously, we want to
drive the generation of the continuous embeddings s towards latent factors that contains
enough information about the node they represent (i.e. we can easily retrieve the one-hot atom
type performing a linear transformation of the continuous embedding) and its neighbourhood
(i.e. the adjacency tensor can be easily retrieved by comparing those embeddings in a
pair-wise manner). For those reasons, we suggest to factorize each bond type in a relational
inference fashion [25, 20].
Let S ∈ Rn×p be the concatenated continuous node embeddings generated in the previous
step. We reconstruct the adjacency tensor E by learning edge-specific similarity measure for
k-th edge type as follows:

p(E:,:,k|S) =
n∏
i=1

n∏
j=1

p(Ei,j,k|si, sj). (6)

This is modeled by a set of edge-specific factors U = (u1, · · · , ue) ∈ Re×p such that we can
reconstruct the adjacency tensor as :

Ẽi,j,k = σ(sTi Dksj) = p(Ei,j,k|si, sj), (7)

where σ is the logistic sigmoid function, Dk the corresponding diagonal matrix of the vector
uk and the factors (ui) ∈ Re×p are learned parameters.
We reconstruct the node features (i.e. the atom type) with a simple affine transformation
such that:

Ñi,: = p(Ni|si) = softmax(Wsi), (8)

where W ∈ Rp×d is a learned parameter.

Generating Graphs of arbitrary sizes. In order to generate graphs of different sizes
we need to add what we call here an Existence module that retrieves a probability of a
node belonging to the final graph for each of the embedding generated (in step 3). This
module is parametrized as a simple MLP layer followed by a sigmoid activation and stops
the unrolling of the embedding LSTM generator whenever we encounter a non-informative
embedding. This module can be interpreted as an < eos > translator.

3.2 Training

Teacher forcing. To make the model converge in reasonable time we adapt teacher-forcing
on language models [21] as follows. The training is thus done in 3 phases:

• We first pre-train the GCN part along with the embedding decoder (factorization,
nodes and existence modules) to reconstruct the graphs. This corresponds to the
training of a simple Graph AE as in [22] except that we also want to reconstruct
the nodes’ one-hot features (and not just the relations).

• We then append those two units to the embedding aggregator and generator while
keeping them fixed. In this second phase, the embedding generator is trained using
teacher forcing where at each time step t the LSTM decoder does not take as input
the previously generated embedding but the true one that is the direct output of
the pretrained GCN embedding encoder.

• Finally in order to transition from teacher-forcing to a fully autoregressive state
we increasingly [5] feed the LSTM generator more of its own predictions. When a
fully autoregressive state is reached the pre-trained units are unfrozen and the whole
model continues training end-to-end.

Log-Likelihood Estimates We train the autoencoder on the reconstruction error using
the MLE with the estimate negative log-likelihood given by:

Lrec = LX + LX̄ + LN (9)

5

where n the number of nodes in the graph, X and X̄ corresponding to the existing and non
existing edges in the adjacency tensor E, and N is the node features, such that:

LX = − 1
|X|

∑
(i,j)∈X

ETi,j,: log(Ẽi,j,:) + (1− Ei,j,:)T log(1− Ẽi,j,:) (10)

LX̄ = − 1
|X̄|

∑
(i,j)∈X̄

∑
k

log(1− Ẽi,j,k) (11)

LN = − 1
n

∑
NT log(Ñ), (12)

Since molecular graphs are sparse, we found that such separate normalisations were helpful
for the training.

3.3 Conditional Generation and Optimisation

Model overview. Given the entangled latent code z for a given input molecular graph,
we create a conditioned input (z, y) by augmenting z with a set of structured attributes
y - the target properties of interest, such as physico-chemical property. The conditional
generator is then trained on the combined reconstruction and property loss. At the end of
a successful training we expect the decoder to generate samples that have the properties
specified in y and to be similar (in terms of information contained in z) to the original query
molecular graph (encoded as z). To do so we choose a mutual information maximization
approach (detailed in the Appendix B.2) that involves the use of discriminators that assess
the properties ỹ of the generated samples and their feedback is used to guide the learning of
the generator.

Discriminator Pre-Training In this phase we pre-train a discriminator to assess the
property y of a generated sample so that we can backpropagate its feedback to the generator
(the discriminator can be trained on another dataset and we can have several discriminators
for several attributes of interest). In order to have informative gradients in the early stages of
the training we have trained the discriminator on continuous approximations of the discrete
training graphs (details in Appendix B.1) so that our objective becomes:

Ldis = E(x,y)∼p̃data(x,y)[− logQ(y|x)], (13)

where the graphs sampled from p̃data(x) are the probabilistic approximations of the discrete
graphs from the training distribution pdata(x).
The next step is to incorporate the feedback signal of the trained discriminator in order to
formulate the property attribute constraint. The training is decomposed in two phases in
which we learn to reconstruct graphs of the dataset (MLE phase) and to modify chemical
attributes (Variational MI maximization phase).

Encoder Learning. The encoder is updated only during the reconstruction phase where
we sample attributes y from the true posterior. The encoder loss is a linear combination
of the molecular graph reconstruction (Lrec) and the property reconstruction (Lprop). The
total encoder loss is:

Lenc = Lrec + βLprop. (14)
where Lrec = E(x,y)∼pdata(x,y),z∼E(z|x)[− log pgen(x|z, y)] (using the log-likelihood estimates
in (7)) and Lprop = E(x,y)∼pdata(x,y),z∼E(z|x),x′∼pgen(x|z,y)[− logQ(y|x′)]. With β ∈ [0, 1] a
hyperparameter of the model.

Generator Learning. The generator is updated in both reconstruction and conditional
phases. In the MLE phase the generator is trained with same loss Lenc as the encoder so
that it is pushed towards generating realistic molecular graphs. In the MI maximization
phase we sample the attributes from a prior p(y) s.t. we minimize the following objective:
Lcond = Ex∼pdata(x),y∼p(y)z∼E(z|x),x′∼pgen(x|z,y)[− logQ(y|x′)],

Lgen = Lrec + αLcond + βLprop. (15)

6

Method Reconstruction Accuracy
JT-VAE [3] 76.7
JT-AE (without stereochemistry) 69.9
DEFactor - 56 89.2
DEFactor - 64 89.4
DEFactor - 100 89.8

Table 1: Molecular graph reconstruction task. We compare the performance of our decoder
in the molecular reconstruction task with the JT-VAE. The results for JT-VAE result is
taken from [3] and use a latent code of size 56. The JT-AE refers to an adapted version of
the original model using the same parameters. It is however deterministic, and like DEFactor
does not evaluate stereochemistry.

where β, α ∈ [0, 1] are hyperparameters of the model.
In this phase the only optimisation signal comes from the trained discriminator. Since there
are no realism constraint specified in our model (see [3, 4]), there is a risk of “falling off the
manifold”. A possible way solution mitigate against it is to add a similarity discriminator
trained to distinguish between the real probabilistic graph and the generated ones - so
that when trying to satisfy the attribute constraint the generator is forced to produce valid
molecular graphs. We leave this for future work.

4 Experiments

To compare with recent results in constrained molecular graph optimization [3, 4], we present
the following experiments :

• Molecular Graph Reconstruction: We test the autoencoder framework on the
task of reconstructing input molecules from their latent representations.

• Conditional Generation: We test our conditional generation framework on the
task of generating novel molecules that satisfy a given input property. Here, we
are interested in the octanol-water partition coefficient (LogP) optimization used as
benchmark in [14, 3, 4].

• Constrained Property Optimization: Finally, we test our conditional autoen-
coder on the task of modifying a given molecule to improve a specified property,
while constraining the degree of deviation from the original molecule. Again we use
the LogP benchmark for the experiment.

Finally in the following section we use the 250K subset of the ZINC [6] dataset, released
by [14], along with their given train and test splits.

Molecular graph reconstruction: In this task we evaluate the exact reconstruction
error from encoding and decoding a given molecular graph from the test set. We report in
Table 1 the ratio of exactly reconstructed graphs, where we see that the our autoencoder
outperforms the JT-VAE [3] which has the current state-of-the-art performance in this task.
Appendix C.1 reports the reconstruction ratio as a function of the molecule size (number of
heavy atoms).

Conditional Generation: In this task we evaluate the conditional generation formulation
described in Section 3.3. For a given molecule m with an observed property value y, the goal
here is to modify the molecule to generate a new molecule with the given target property
value; (m∗, y∗). New molecules are generated by conditioning the decoder on (z; y∗), where
z is the latent code for m. The decoded new molecule m∗, is ideally best suited to satisfy
the target property. This is evaluated by comparing the property value of the new molecule
with the target property value. A generator that performs well at this task will produce
predicted molecules with property values that are close to the target. In these experiments,

7

Figure 2: Conditional generation: The initial LogP value of the query molecule is specified
as IL and the Pearson correlation coefficient is specified as c. We report on the y-axis the
conditional value given as input and on the x-axis the true LogP of the generated graph
when translated back into molecule. For each molecule we sample uniformly around the
observed LogP value and report the LogP values for the decoded graphs corresponding to
valid molecules.

LogP was chosen as the desired property, and we use RDKIT [7] to calculate the LogP values
of generated molecules.

The scatter plots in Figure 2 give for a selected set of test molecules, the correlation of target
property values against the evaluated property value of the correctly decoded molecules.
Here, for each molecule the target set is defined by uniformly sampling around the observed
property value for the molecule.

Constrained Property Optimization: In this section we follow the evaluation method-
ology outlined in [3, 4], and evaluate our model in a constrained molecule property optimiza-
tion. In contrast to [3], due to the conditional formulation, does not need retraining for the
optimisation task.

Given the 800 molecules with the lowest penalized LogP2 property scores from the test set,
we evaluate the decoder by providing pairs of (z, y∗) with increasing property scores, and
among the valid decoded graphs we compute:

• Their similarity scores (Sim.) to the encoded target molecule (called the prototype);

• Their penalized LogP scores. Note that in this setting the conditioning property
values (y∗) are the unpenalized LogP scores. However, to evaluate the model
we compute the penalized LogP scores to assess the model’s ability to decode
synthetically accessible molecules.

• While varying the similarity threshold values (δ), we compute the success rate (Suc.)
for all 800 molecules. This measures how often we to get a novel molecule with an
improved penalized LogP score.

• Finally, for different similarity thresholds, for successfully decoded molecules, we
report the average improvements (Imp.) and the similarity (Sim.) for the molecule
that is most improved. We compare our results with [3, 4].

2The penalized logP is octanol-water partition coefficient (logP) penalized by the synthetic
accessibility (SA) score and the number of long cycles, see [3]

8

δ
JT-VAE GCPN DEFactor

Imp. Sim. Suc. Imp. Sim. Suc. Imp. Sim. Suc.

0.0 1.91± 2.04 0.28±0.15 97.5% 4.20±1.28 0.32±0.12 100% 6.62±2.50 0.20±0.16 91.5%
0.2 1.68± 1.85 0.33±0.13 97.1% 4.12±1.19 0.34±0.11 100% 5.55±2.31 0.31±0.12 90.8%
0.4 0.84± 1.45 0.51±0.10 83.6% 2.49±1.30 0.47±0.08 100% 3.41±1.8 0.49±0.09 85.9%
0.6 0.21± 0.71 0.69±0.06 46.4% 0.79±0.63 0.68±0.08 100% 1.55±1.19 0.69±0.06 72.6%

Table 2: Constrained penalized LogP maximisation task: each row gives a different threshold
similarity constraint δ and columns are for improvements (Imp.), similarity to the original
query (Sim.), and the success rate (Suc.). Values for other models are taken from [4].

The final results are reported in Table 2. As can be seen, although slightly behind GCPN [4]
w.r.t. success rates (Suc.), DEFactor significantly outperforms other models in terms of
improvements (Imp.) achieved (by between 1.3× and 1.95× for thresholds 0.2 and 0.6
respectively, with respect to the next best model GCPN).

5 Future work

In this paper, we have presented a new way of modelling and generating graphs in a
conditional optimisation setting such that the final graph being fully differentiable w.r.t to
the model parameters. We believe that our DEFactor model will contribute to understanding
and building ML-driven applications for de-novo drug design or generation of molecules with
optimal properties, without resorting to methods that do not directly optimise the desired
properties.
Note that a drawback of our model is that it uses an MLE training process which forces us
to either fix the ordering of nodes or to perform a computationally expensive graph matching
operation to compute the loss. Moreover in our fully deterministic conditional formulation
we assume that chemical properties optimisation is a one-to-one mapping but in reality there
may exist many suitable way of optimizing a molecule to satisfy one property condition while
staying similar to the query molecule. To that extent it could be interesting to augment our
model to include the possibility of a one-to-many mapping. Another way of improving the
model could also be to include a validity constraint formulated as training a discriminator
that discriminates between valid and generated graphs.

Acknowledgements

The authors thank NSERC and CIFAR for funding at U. Montreal and Mila as well as Marco
Fiscato, Petar Veličković, Jian Tang and Benedek Fabian for useful discussions.

References
[1] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis

with auxiliary classifier gans, 2016.

[2] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative
adversarial nets, 2016.

[3] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoen-
coder for molecular graph generation, 2018.

[4] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolu-
tional policy network for goal-directed molecular graph generation, 2018.

[5] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling
for sequence prediction with recurrent neural networks, 2015.

[6] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G.
Coleman. Zinc: A free tool to discover chemistry for biology. Journal of Chemical
Information and Modeling, 52(7):1757–1768, 2012. PMID: 22587354.

9

[7] RDKit: Open-source cheminformatics. http://www.rdkit.org. [Online; accessed
11-April-2013].

[8] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with
conditional graph generative model, 2018.

[9] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. CoRR, abs/1609.05473, 2016.

[10] Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative
models, 2018.

[11] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small
graphs using variational autoencoders, 2018.

[12] Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating
focussed molecule libraries for drug discovery with recurrent neural networks, 2017.

[13] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-
Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design
using a data-driven continuous representation of molecules, 2016.

[14] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In Proceedings of the 34th International Conference on Machine Learning,
2017.

[15] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed
variational autoencoder for structured data. CoRR, abs/1802.08786, 2018.

[16] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning
deep generative models of graphs, 2018.

[17] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models, 2018.

[18] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolu-
tional neural networks on graphs, 2017.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks, 2016.

[20] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
Neural relational inference for interacting systems, 2018.

[21] Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks, 1989.

[22] Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016.

[23] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs, 2017.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[25] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side
effects with graph convolutional networks. Bioinformatics, 34:13, 457-466, 2018, 2018.

[26] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small
molecular graphs, 2018.

10

http://www.rdkit.org

Appendix A

A.1 Models Comparison

Model Inference Parameters Constrained Probabilistic No Retraining
MolGAN [26] 7 7 7 3 NA
JT-VAE [3] 3 3 3 7 7
GCPNN[4] 7 3 3 7 3

DEFactor(Ours) 3 3 3 3 3

Figure 3: We report here a comparison of the abilities of previous recent models involving
molecular graph generation and optimization.

We are interested in the following features of the models :

• Inference : If the model is equipped or not with an inference network. To encode
some target molecule like we do in the conditional setting.

• Parameter-efficient : If the number of parameters of the model depends on the
graph sizes.

• Constrained : If the model is studied in a constrained optimization scenario :
namely the case where we want to optimize a property while constraining the degree
of deviation from the original molecule.

• Probabilistic : If the outptut of the model is a probabilistic graph s.t. it is
differentiable w.r.t to the decoder’s parameters.

• No Retraining : If we need to retrain/fine-tune/perform gradient-ascent each time
we want to optimize a novel molecule.

Appendix B

B.1 Graphs continuous approximation

For the pre-training of the discriminators we suggested to train them on continuous approxi-
mation of the discrete graphs that resembles the output of the decoder. To that extent we
used the trained partial graph autoencoder (used for the teacher forcing at the beginning of
the training of the full autoencoder.)

Figure 4: Partial graph Autoencoder used for the pre-training.

11

B.2 Mutual information maximization

For the conditional setting we choose a simple mutual information maximization formulation.
The objective is to maximize the MI I(X;Y) between the target property Y and the decoder’s
output X = Gθ(Y) under the joint pθ(X,Y) defined by the decoder Gθ. In the conditional
setting Gθ is also conditioned on the encoded molecule z but for simplicity we treat it as a
parameter of the decoder (and thus reason with one target molecule from which we want to
modify attributes). We define the MI as:

I(y;Gθ(y)) = Ex∼Gθ(y)[Ey′∼pθ(y|x)[log pθ(y′|x)]] +H(y)
= Ex∼Gθ(y)[DKL(pθ(.|x)||Q(.|x))
+ Ey′∼pθ(y|x)[logQ(y′|x)]] +H(y)
≥ Ex∼Gθ(y)[Ey′∼pθ(y|x)[logQ(y′|x)]] +H(y)

In our conditional setting we pre-trained the discriminators (parametrized by Q in the
lower bound derivation) to approximate pdata(y|x) which makes the bound tight only when
pθ(ypaired|x) is close to pdata(y|x) and this corresponds to a stage where the decoder has
maximized the log-likelihood of the data well enough (i.e. when it is able to reconstruct
input graphs properly when z and y are paired). Thus, in the conditional setting we are
maximizing the following objective:

Lcond = Ex,y∼pdata(x,y),z∼E(x),y′∼p(y)[logGθ(y, z) + I(y′;Gθ(y′, z))]

Appendix C

C.1 Reconstruction as a function of number of atoms

Figure 5: Accuracy score as a function of the number of heavy atoms in the molecule(x axis)
for different size of the latent code.

Notice that as we make use of a simple LSTM to encode a graph representation, there is a
risk that for the largest molecules the long term dependencies of the embeddings are not
captured well resulting in a bad reconstruction error. We capture this observation in figure 4.
One possible amelioration could be to add at each step another non-sequential aggregation
of the embeddings (average pooling of the embeddings for example) or to make the encoder
more powerful by adding some attention mechanisms. We leave these options for future
work.

12

C.2 Visual similarity samples

13

Figure 6: LogP increasing task visual example. The original molecule is outlined in red.

14

	1 Introduction
	2 Related work
	3 DEFactor
	3.1 Graph Construction Process
	3.2 Training
	3.3 Conditional Generation and Optimisation

	4 Experiments
	5 Future work
	A
	A.1 Models Comparison

	B
	B.1 Graphs continuous approximation
	B.2 Mutual information maximization

	C
	C.1 Reconstruction as a function of number of atoms
	C.2 Visual similarity samples

