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Abstract

Efficient keypoint-based object detection methods are
used in many real-time computer vision applications. These
approaches often model an object as a collection of key-
points and associated descriptors, and detection then in-
volves first constructing a set of correspondences between
object and image keypoints via descriptor matching, and
subsequently using these correspondences as input to a ro-
bust geometric estimation algorithm such as RANSAC to
find the transformation of the object in the image. In such
approaches, the object model is generally constructed of-
fline, and does not adapt to a given environment at runtime.
Furthermore, the feature matching and transformation esti-
mation stages are treated entirely separately. In this paper,
we introduce a new approach to address these problems by
combining the overall pipeline of correspondence genera-
tion and transformation estimation into a single structured
output learning framework.

Following the recent trend of using efficient binary de-
scriptors for feature matching, we also introduce an ap-
proach to approximate the learned object model as a collec-
tion of binary basis functions which can be evaluated very
efficiently at runtime. Experiments on challenging video
sequences show that our algorithm significantly improves
over state-of-the-art descriptor matching techniques using
a range of descriptors, as well as recent online learning
based approaches.

1. Introduction

Keypoint-based object detection has become a corner-
stone of modern computer vision, enabling great advances
in areas such as augmented reality (AR) and simultaneous
localization and mapping (SLAM). These object detection
approaches model an object as a set of keypoints, which are
matched independently in an input image. Robust estima-
tion procedures based on RANSAC [4, 5, 16] are then used
to determine geometrically consistent sets of matches which

can be used to infer the presence and transformation of the
object.

There has been a great deal of progress in making these
approaches suitable for real-time applications, and there are
now a range of methods available for use on a desktop
PC [1,9,12]. Recently, there has been significant interest in
developing approaches suitable for low-powered mobile de-
vices such as smartphones and tablets, which are becoming
increasingly popular platforms for computer vision applica-
tions [3, 10, 14, 15]. These approaches focus on making the
matching stage as efficient as possible, since this is gener-
ally the most time-consuming part of the detection pipeline.
To achieve this, they design image descriptors which can
be represented as binary vectors, allowing matching to be
performed very efficiently by measuring Hamming distance
between descriptors, which can be implemented using bi-
nary CPU instructions.

The object models built by traditional approaches are
static, usually constructed offline for a particular object. For
certain applications like AR and SLAM, however, we want
to detect the object repeatedly in a dynamic environment.
Additionally, some applications require on-the-fly learning
and detection to build an instantaneous model from only
a single snapshot of the object. Therefore it is desirable
to be able to learn an object model efficiently online and
adapt it to a particular environment, which is not typically
addressed by traditional approaches. This process of adapt-
ing or learning the model should not add significant over-
head to the detection pipeline, and should still be suitable
for real-time detection on low-powered devices. These re-
quirements create a very challenging problem for a learning
algorithm.

The approach we propose in this paper frames the entire
object detection procedure as structured output prediction,
such that overall detection performance can be optimized
given a set of training images. Our formulation combines
feature learning, matching, and pose estimation into a single
unified framework. Furthermore, because we use a linear
structured SVM to perform learning, we are able to perform
training online, which allows us to quickly adapt our model
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to a given environment. Additionally, we show that we can
accurately approximate our model during evaluation in such
a way that we can take advantage of binary descriptors and
the efficiency they provide. As a result, our algorithm adds
a relatively small amount of computational overhead com-
pared to static models, while improving the detection rate
significantly.

2. Motivation and related work

Keypoint-based methods for geometric object detection
generally follow a two stage approach:

1. Finding a set of 2D correspondences between an object
model and an input image.

2. Estimating the transformation of the object in the im-
age using a robust geometric verification method based
on hypotheses generated from the correspondences
(e.g. RANSAC and its variants).

Generally these two steps are considered as separate
problems, and many algorithms focus on improving the ob-
ject detection quality by employing robust methods for each
of these steps individually.

To find the appearance-based 2D correspondences, there
are two approaches: matching and classification. Matching-
based approaches [1,3,10,11] use descriptors to store a sig-
nature for each model keypoint in a database. These de-
scriptors are designed to be invariant to various geometric
and photometric transformations, and can then be matched
given a suitable distance metric to keypoints in an image in
a nearest-neighbour fashion.

Classification-based approaches [9, 12, 15] treat match-
ing as multi-class classification, in which the task is to clas-
sify each image keypoint as either background or a partic-
ular keypoint from the model. These classifiers are learned
offline from training examples of the object observed under
various geometric and photometric transformations (usually
generated synthetically), and are therefore tuned to the spe-
cific object and how individual keypoints might appear un-
der various illumination levels and new view-points. The
training algorithm and the number of training examples de-
termine the computational complexity of the learning stage.

Since classification-based approaches rely on the avail-
ability of a 2D/3D object model at training time, these ap-
proaches cannot easily be used for on-the-fly object detec-
tion and tracking. In other words, these algorithms are not
suitable for detection and tracking of arbitrary unknown ob-
jects. This particular problem of the classification-based ap-
proaches limit their applicability in practice.

In [13], the authors propose an approach for learning a
classification-based model at runtime, by using online ran-
dom forests to reduce training time. However, this approach

is still too computationally expensive to be useful on low-
powered devices, and also does not continue to adapt the
model after the initial training phase. The method presented
in [6] is most related to our work, in which the authors learn
keypoint classifiers online by using Haar features and an
online boosting algorithm. This approach relies on the fact
that the geometric verification step can be used in order to
provide labels for updating the classifiers in an online man-
ner, allowing for adaptive tracking by detection.

To the best of our knowledge, all previous methods in-
volving learning treat the generation of correspondences
and estimation of object transformation separately. In
this paper, we propose a novel approach which combines
these two steps into a coherent structured output learning
framework. In this formulation, correspondence genera-
tion, learning, and transformation estimation are all work-
ing together in a unified optimization formulation with the
goal of performing object detection robustly. Our approach
proposes an alternative view on keypoint-based object de-
tection where the transformation estimation algorithm op-
erates as the maximization step of a structured output learn-
ing framework. Unlike the online boosting approach of [6],
our formulation is also capable of incorporating any kind of
keypoint descriptor into its learning process and is specifi-
cally targeted towards low-powered devices.

Structured output prediction was introduced to the com-
puter vision community in [2] for the task of 2D sliding-
window object detection. In [7], the authors use a similar
approach with online learning to perform adaptive 2D track-
ing by detection. Our work differs from these approaches in
that we are interested in object detection and tracking under
a much larger class of transformations such as 3D pose or
homography, and as a result we propose using RANSAC in
order to perform structured output prediction.

There has recently been significant research interest fo-
cusing on object detection for low-powered portable plat-
forms such as smartphones. In particular, highly efficient
methods such as BRIEF [3] and BRISK [10] have been de-
veloped for descriptor matching. Both of these methods
perform simple binary pixel-based tests on keypoints in or-
der to build binary descriptors. By representing these de-
scriptors as bitsets and measuring similarity using the ham-
ming distance, matching can be performed extremely effi-
ciently using bitwise operations which are well-supported
by modern CPUs. We show how the internal representation
of our algorithm can be approximated to take advantage of
these binary descriptors, making our approach also suitable
for low-powered devices.

3. Structured output formulation

In this section, we describe our formulation of keypoint-
based object detection as a structured output problem.



3.1. RANSAC for structured prediction

Given an object model M and an input image I , the goal
of object detection is to compute a transformation T ∈ T
which maps M to I . A 3D pose or 2D homography are
examples of such a transformation.

We can think of this process as one of structured out-
put prediction, with the output space consisting of all valid
transformations, along with a null transformation indicating
the absence of the object. We therefore assume that there
exists a function T = f(M, I), and that this function can
be expressed as

T = argmax
T ′∈T

F (M, I, T ′), (1)

where F is a compatibility function, scoring all possible
transformations of the object given an image.

In practice, finding a solution for the prediction func-
tion Eq (1) under a specific model definition is generally
infeasible because the output space is very large, and eval-
uating image observations under different transformations
of the model will be expensive. The way that this issue is
usually handled is by applying an iterative robust parameter
estimation algorithm such as RANSAC [5] or PROSAC [4]
to approximately solve Eq (1). These algorithms rely on
a sparse representation for the model and image and use a
set of correspondences between model and image points as
their input.

Consider an object model M which is based on a sparse
set of keypointsM = {u1, . . . , uJ}, with each keypoint de-
fined by a location (2D or 3D). Similarly, let the image I be
represented as a sparse set of keypoints I = {v1, . . . , vK}.
A set of correspondences C = {(uj , vk, sjk)|uj ∈M, vk ∈
I, sjk ∈ R} is found between model keypoints and im-
age keypoints, where sjk is a correspondence score derived
from appearance information. Traditional RANSAC maxi-
mizes the number of inliers defined by

F (C, T ) =
∑

(uj ,vk)∈C

I(‖vk − T (uj)‖2 < τ), (2)

where T (uj) is the location of model keypoint uj under
the transformation T , τ is a spatial mis-alignment thresh-
old and I(.) is an indicator function. This maximization
is performed by randomly sampling transformations which
are compatible with minimal subsets of correspondences in
C, with variants such as PROSAC biasing this sampling by
using the correspondence scores sjk.

Existing approaches have applied learning in an offline
setting [9, 12, 15] as well as in an online setting [6, 13] to
encourage reliable appearance-based correspondences to be
found in C. However, in these approaches the generation of
correspondences and the scoring and maximization (Eq (2))
are decoupled from each other. These approaches therefore

do not perform learning which takes into account the entire
transformation prediction process.

To allow learning for the entire prediction process, we
propose introducing a weight vector wj for each model
keypoint uj . This weight vector is used to score corre-
spondences according to sjk = 〈wj ,dk〉, where dk is a
descriptor extracted around image keypoint vk, normalized
such that ‖dk‖2 = 1. We then propose modifying the com-
patibility function Eq (2) to include correspondence scores,
such that it can be written as a linear operator

Fw(C, T ) =
∑

(uj ,vk)∈C

sjk I(‖vk − T (uj)‖2 < τ)

=〈w,Φ(C, T )〉,
(3)

where w = [w1, . . . ,wJ ]T is the concatenation of model
weight vectors and Φ(C, T ) = [φ1(C, T ), . . . ,φJ(C, T )]T

is a joint feature mapping. Each φj is defined as

φj(C, T ) =

{
dk ∃(uj , vk) ∈ C : ‖vk − T (uj)‖2 < τ

0 otherwise.
(4)

Our goal is to learn a model parameterized by w such
that the behaviour of this function in the output space is
close to the actual behaviour of RANSAC, but, because it
includes information about appearance, in the process of
learning we will discover which model points are the most
discriminative and how best we can utilize them to predict
transformations.

3.2. Structured output learning

Now, given a set of training examples {(Ii, Ti)}Ni=1, w
can be learned in a structured output maximum margin
framework [17]. For each training example i, this formu-
lation tries to maximize the margin between the score of
the true output Ti and all alternative outputs. This can be
expressed by the following optimization problem

min
w,ξ

λ

2
‖w‖2 +

N∑
i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i,∀T 6= Ti : δF i
w(T ) ≥ ∆(Ti, T )− ξi

(5)

where δF i
w(T ) = Fw(Ci, Ti) − Fw(Ci, T ), and λ is a pa-

rameter determining the trade-off between training set accu-
racy and regularization. ∆(Ti, T ) is a loss function which
measures the penalty for choosing T instead of the true
transformation Ti. The loss function ∆(Ti, T ) should mea-
sure the dissimilarity of two competing output hypotheses,
and will be discussed in Section 3.3.

Because we are using RANSAC to perform the output
prediction and this relies on an accurate set of correspon-
dences, we modify this formulation to also encourage each



inlier correspondence to score higher than any other image
correspondence. This can be realized as an additional set of
ranking constraints and the formulation then becomes

min
w,ξ,γ

λ

2
‖w‖2 +

N∑
i=1

ξi + ν

N∑
i=1

∑
(uj ,vk)∈C∗i

γij

s.t. ∀i : ξi ≥ 0

∀i, ∀T 6= Ti : δF i
w(T ) ≥ ∆(Ti, T )− ξi

∀i, ∀j : γij ≥ 0

∀i, ∀(uj , vk),∀k′ 6= k : 〈wj ,dk − dk′〉 ≥ 1− γij
(6)

where C∗i ⊂ Ci is the set of inlier correspondences under Ti,
and ν is a weighting parameter.

The learning problem presented in Eq (6) allows us to
train a discriminative model in a unified framework where
learning the representation of model points and performing
pose estimation is combined in a structured output maxi-
mum margin setting.

3.3. Loss function

Eq (6) requires a loss function ∆ to be defined be-
tween two transformations. Since the compatibility func-
tion Fw(C, T ) sums over those correspondences in C which
are inliers under T , we desire a loss function which takes
into account the fact that transformations will have differ-
ent numbers of inliers. We consider two such loss functions,
which we compare experimentally in Section 4:

1. Hamming distance on inliers:

∆H(T, T ′) =
∑

(uj ,vk)∈C

I
(
z(uj , vk, T ) 6= z(uj , vk, T

′)
)

(7)
where z(uj , vk, T ) = I(‖vk − T (uj)‖2 < τ). This
loss function aims to penalize transformations having
different inlier sets.

2. Difference in number of inliers:

∆I(T, T ′) = |F (C, T )− F (C, T ′)|. (8)

This loss function aims to penalize transformations
with different numbers of inliers, similar in spirit to
the traditional RANSAC scoring function (Eq (2)).

3.4. Online learning

While Eq (6) can be solved offline as a batch problem,
for our application we are interested in updating w online,
such that we can adapt the model to a given environment.
The model can be initialized by setting each wj to be the de-
scriptor one would use in a static model, and in subsequent
frames can be updated by performing stochastic gradient

descent. We rewrite the optimization problem of Eq (6) in
unconstrained form as

min
w

{λ
2
‖w‖2 +

N∑
i=1

(
max
T 6=Ti

{∆(Ti, T )− δF i
w(T )}

)
+

+

ν

N∑
i=1

∑
(uj ,vk)∈C∗i

(
max
k′ 6=k
{1− 〈wj ,dk − dk′〉}

)
+

}
(9)

where (.)+ = max{0, .} is the hinge function.
Given a training example (It, Tt) at time t, a subgradient

of Eq (9) is found with respect to w, and a gradient descent
step is then performed according to

wt+1
j ← (1− ηtλ)wt

j+

I(max
T 6=Tt

{∆(Tt, T )− δF t
w(T )} > 0)ηtα

t
j+

I(uj ∈ C∗t ) I(max
k′ 6=k
{1− 〈wt

j ,dk − dk′〉} > 0)ηtνβ
t
j ,

(10)
where ηt = 1/λt is the step size. Let T̂ =

argmaxT 6=Tt
{∆(Tt, T ) − δF t

w(T )} and k̂ =

argmaxk′ 6=k{1 − 〈wt
j ,dk − dk′〉}. Then αt

j and βt
j

are defined as

αt
j = φj(Ct, Tt)− φj(Ct, T̂ ), (11)

and
βt
j = dk − dk̂. (12)

To estimate Tt for the current image, we use the predic-
tion of Eq (1) using the old model representation wt−1 and
then update the model according to Eq (10). Furthermore,
when performing RANSAC in our prediction function we
will also be exploring and scoring other transformations,
which gives us a mechanism for identifying any margin vi-
olations which have occurred, the largest of which will con-
tribute to the gradient descent step Eq (10). In this way, our
online learning can re-use the intermediate results of esti-
mating Tt, and thus adds only a small amount of overhead
compared to detection alone.

3.5. Binary approximation of model

An important goal of our method is to be real-time and
suitable for low-powered devices, and we would therefore
like to take advantage of binary descriptors. Although these
descriptors are very compact when represented as bitsets,
to use a linear SVM requires converting them into high-
dimensional real vectors. While this is acceptable when
updating the classifier, it would be very computationally
expensive at the matching stage, which requires exhaustive
evaluation of every model classifier with every image key-
point. To avoid this, we propose approximating each wj in



terms of a set of basis vectors

wj ≈
Nb∑
i=1

βibi (13)

where bi ∈ {−1, 1}D, and D is the dimensionality of the
descriptor. This approximation must be updated each time
wj changes, so we choose to use a simple greedy method
as described in Algorithm 1.

Algorithm 1 Binary approximation of wj

Require: wj , Nb

r = wj (initialize residual)
for i = 1 to Nb do

bi = sign(r)
βi = 〈bi, r〉/‖bi‖2 (project r onto bi)
r← r− βibi (update residual)

end for
return {βi}Nb

i=1, {bi}Nb
i=1

Using this approximation, we can efficiently compute the
dot-product 〈wj ,d〉 using only bitwise operations. To do
so, we represent each bi using a binary vector and its com-
plement: bi = b+

i − b+
i , where b+

i ∈ {0, 1}D. We then
rewrite

〈wj ,d〉 ≈
Nb∑
i=1

βi(〈b+
i ,d〉 − 〈b

+
i ,d〉), (14)

and note that each dot-product inside the summation can be
computed very efficiently using a bitwise AND followed
by a bit-count. This can be computed even more effi-
ciently if we have precomputed the bit-count of d, since
〈b+

i ,d〉−〈b
+
i ,d〉 = 2〈b+

i ,d〉−|d|. This means that by ap-
proximating wj with Nb components, our correspondence
score is roughlyNb times more expensive to evaluate than a
binary Hamming distance. In practice, we find it sufficient
to set Nb = 2, see Section 4 for experimental results.

4. Experiments
We performed a number of experiments in order to vali-

date the approach described in this paper. Our method is ap-
plicable to general object models and transformations, but
for the purposes of our experiments we consider the case of
a planar object model detected in an image under a homog-
raphy transformation.

We recorded a number of video sequences of a static
scene observed from a moving camera, using a SLAM sys-
tem to track the 3D camera pose in each frame (example
frames can be seen in Figure 1). Each sequence begins with
a fronto-parallel view of a planar patch, which is used in our
experiments to define the object model. Using the known

(a) barbapapa

(b) comic

(c) map

(d) paper

(e) phone

Figure 1. Example frames from our test sequences, which also
show the detection results for the BRIEF model learned using our
structured output framework (Section 4.1). These sequences are
challenging for keypoint-based matching approaches due to the
presence of many similar features in the scene.

camera pose, we computed a ground-truth homography for
the object in each video frame, which is then used for eval-
uating the quality of the homography estimates produced
during object detection in our experiments.

In order to evaluate the effectiveness of our approach
and to observe the contribution of learning and the com-
bined structured output framework, we also implemented
a baseline of independently online trained SVM classifiers
for each model keypoint. In this framework, we take away
the coupling between model points that comes from our
model and train each SVM classifier independently of one
other. At run-time, we compute a matching score for the



Sequence BRIEF BRISK SURF Boost. [6]Static Indep. ∆H ∆I Static Indep. ∆H ∆I Static Indep. ∆H ∆I

barbapapa 0.19 0.94 0.94 0.94 0.92 0.93 0.94 0.94 0.89 0.45 0.92 0.92 0.88
comic 0.41 0.90 0.94 0.98 0.42 0.60 0.61 0.76 0.83 0.67 0.90 0.93 0.56
map 0.82 0.98 0.99 0.99 0.79 0.91 0.91 0.93 0.91 0.09 0.98 0.99 0.83
paper 0.06 0.68 0.77 0.85 0.04 0.40 0.51 0.54 0.03 0.01 0.03 0.03 0.04
phone 0.88 0.93 0.97 0.97 0.64 0.82 0.91 0.92 0.92 0.46 0.96 0.97 0.85

Table 1. Average detection rates in test sequences (the higher better). Each row represents a video sequence. Each set of columns shows a
different combination of feature point detector and descriptor, while the last single column is the result of the boosting approach. Within
a feature detector/descriptor combination, we compare the results of no learning (static), independently trained SVM classifiers, and our
structured output learning framework with the two loss functions ∆H and ∆I defined in Section 3.3. The bold-face font represents the best
working method for a video sequence in a chosen detector/descriptor setting.

j-th model keypoint using the learned SVM as fj(dk) =
〈wj ,dk〉 and use this score to find the highest scoring match
to construct the correspondence set for pose estimation. To
update each classifier, we take each inlier returned from
the geometric verification set as a positive training exam-
ple, and select the next highest scoring image keypoint as
a negative example. We then perform stochastic gradient
descent learning to update the classifiers.

Additionally, we implemented the boosting-based clas-
sification approach used in [6], by making use of the pub-
licly available online boosting code of the authors1. We
train these classifiers in the same manner as our indepen-
dent SVM baseline.

The unoptimized C++ implementation of our approach
as well as the annotated videos used during our experiments
are publicly available to download2.

4.1. Tracking by detection

To illustrate the benefit of online learning we consider
the task of tracking-by-detection, in which the target ob-
ject should be detected in consecutive frames of a video se-
quence. For this task we do not use any information about
the location of the object in the previous frame when de-
tecting the object, but we use each successful detection in
order to perform an online learning step to update our object
model for subsequent frames.

We apply our approach using three different combina-
tions of interest point detector and descriptor: FAST de-
tector with 256-bit BRIEF descriptor, BRISK detector with
512-bit BRISK descriptor and SURF detector with SURF64
descriptor. These have been chosen to illustrate that our
method works with a variety of feature point detectors and
descriptors, but as they each have different invariances and
dimensionality, our results should not be interpreted as a
comparison between different descriptor types. Therefore,
we are interested in relative performance figures for a par-
ticular feature point detector and descriptor combination.

1http://www.vision.ee.ethz.ch/boostingTrackers/onlineBoosting.htm
2http://www.samhare.net/research

When learning with binary descriptors, we apply the fea-
ture transformation d̃ = (d− 0.5)/0.5

√
D, where D is the

dimensionality of the descriptor, which centers and normal-
izes the descriptors, as this is known to improve the perfor-
mance of stochastic gradient descent algorithms [8]. During
matching this transformation can easily be handled implic-
itly in the binary approximation without any overhead. We
fix the SVM learning rate λ = 0.1 for all experiments. We
also set ν = 1 for the structured model.

For each sequence, we initialize a model using the
fronto-parallel planar patch in the first frame, by detecting
the 100 strongest features to define the locations of model
keypointsM. Given these locations we initialize four mod-
els for comparison: a non-adaptive matching-based model
using the descriptors for the model keypoints extracted from
the first frame (to represent a traditional keypoint-based ob-
ject detection approach); the baseline learned model using
independent SVM classifiers; and our structured output ap-
proach with the two loss functions described in Section 3.3.
We initialize the weight vector for a model keypoint by set-
ting it to the descriptor from the first frame.

To assess detection performance, we define a scoring
function between the ground-truth homography T ∗ and the
predicted homography T as:

S(T ∗, T ) =
1

4

4∑
i=1

‖ci − (T ∗T−1)(ci)‖2, (15)

where {ci}4i=1 = {(−1,−1)T, (1,−1)T, (−1, 1)T, (1, 1)T}
define the corners of a square. This score will be 0 if the
two homographies are identical. Frames for which
S(T ∗, T ) < 10 are considered correct detections, and we
report the average over the entire sequence.

The results of our experiments without the binary ap-
proximation described in Section 3.5 can be seen in Ta-
ble 13. As can be seen from this table, the structured out-
put learning framework outperforms the static model (with

3The actual videos and the results of tracking-by-detection can be found
in our supplementary material or at http://www.samhare.net/research.



no learning), as well as the model trained with indepen-
dent SVM classifiers. Comparing the results of independent
SVM classifiers and the static model highlights the fact that
adapting an object model to a particular environment online
helps a lot in practice. However, the highest detection rate
is attained when we used the structured output framework
where the learning of the object model and geometric esti-
mation is linked inside a unified optimization formulation.
In particular, using the loss function ∆I based on the differ-
ence in number of inliers results in the best performance. It
should be noted that for SURF descriptors the independent
SVMs had difficulty learning the correct object model. We
suspect that this is caused because of the continious nature
of the SURF descriptor and the fact that the number of gen-
erated keypoints is lower with the SURF keypoint detector.
However, given the same settings, the structured learning
approch is able to benefit fully from the adaptation process
and improve upon the static model.

For the boosting-based online descriptor learning ap-
proach, it is only fair to compare against the models where
we use the BRIEF descriptor (as both of these methods are
using the same FAST corner detector). Again one can see
that comparing the boosting method with the static method,
learning still provides an improvement. However, the boost-
ing based approach is not able to outperform the indepen-
dent SVM learning framework, and is therefore also per-
forming worse than the structured output framework.

The most difficult video in our set of experiments is the
paper sequence. This video sequence features highly repet-
itive local appearance structures and a simple static model
fails in all cases. The learning based approaches (except the
boosting method) are able to deliver a reasonable detection
rate using binary descriptors. An example frame of this se-
quence is shown in Figure 2 where we display the generated
correspondences before geometric verification. As can be
seen in the top image, because of the confusing appearance
of the local image features, the static BRIEF model fails to
match model keypoints consistently to the image. However,
the structured learning framework which uses the same set
of descriptors extracted from the input image for match-
ing has learned a more discriminative object model and is
able to provide more meaningful correspondences which
are mainly focused on where the object is in the input frame.
Another observation is that although the structured learning
model creates some mis-matches (lines matching an object
point to some background locations), they all contain very
small matching scores (indicated by their dark color).

4.2. Binary approximation

To verify that the binary approximation proposed in Sec-
tion 3.5 is reasonable when using binary descriptors such
as BRIEF and BRISK, we repeat our experiments for the
BRIEF descriptor model learned in our structured output

(a) Static BRIEF model

(b) Learned BRIEF model using our structured output formulation

Figure 2. Example frames from the paper sequence showing the
top correspondence for each model point. The model is displayed
in a green box on the left of this image. The brightness of each
line indicates the correspondence score, before any geometric ver-
ification has taken place (the brighter the higher the score). The
learned model has adapted to discriminate against the many con-
fusing keypoints in the image, resulting in a successful detection,
while no detection is found with the static model.

framework and approximate the model keypoint weight
vectors wj with varying numbers of binary bases Nb. As
can be seen in Figure 3, in general the binary approximation
produces detection performance comparable to the original
classifier with Nb ≥ 2 bases, and for the less challenging
sequences even a single basis suffices. In terms of detection
time, which includes the stages of generating correspon-
dences between model and image, performing geometric
verification, and updating the learner, we see that the binary
approximation provides significant performance gains (ap-
proximately 4 times faster detection with our unoptimized
implementation). This means that our approach is suitable
for use even on low-powered devices.

5. Conclusions

In this paper, we presented a novel approach to learn-
ing for real-time keypoint-based object detection and track-
ing. Our formulation generalizes previous methods by com-
bining the feature matching, learning, and object pose es-
timation into a coherent structured output learning frame-
work. We showed how such a model can be trained on-
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Figure 3. Behaviour of the learned BRIEF model using our structured output formulation when employing a binary approximation of
each wj as described in Section 3.5. For Nb ≥ 2 the detection performance is almost equivalent to the original model, whilst being
approximately four times faster with our unoptimized implementation.

line, and presented an approximation to create an efficient
way of using binary descriptors at runtime. During our ex-
periments we showed that learning in the unified structured
output learning formulation plays an important role in im-
proving the detection rate compared to state-of-the-art static
and learning-based feature matching techniques.

While we did not perform feature selection explicitly,
our formulation implicitly is able to down-weight the less
discriminative features, and therefore, provides a good start-
ing platform for further research into automatic online fea-
ture selection.
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