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Abstract

The principle of parsimony also known as “Ockham’s razor” has inspired many theories of model
selection. Yet such theories, all making arguments in favorof parsimony, are based on very different
premises and have developed distinct methodologies to derive algorithms. We have organized chal-
lenges and edited a special issue of JMLR and several conference proceedings around the theme of
model selection. In this editorial, we revisit the problem of avoiding overfitting in light of the latest
results. We note the remarkable convergence of theories as different as Bayesian theory, Minimum
Description Length, bias/variance tradeoff, Structural Risk Minimization, and regularization, in
some approaches. We also present new and interesting examples of the complementarity of theo-
ries leading to hybrid algorithms, neither frequentist, nor Bayesian, or perhaps both frequentist and
Bayesian!

Keywords: model selection, ensemble methods, multilevel inference,multilevel optimization,
performance prediction, bias-variance tradeoff, Bayesian priors, structural risk minimization, guar-
anteed risk minimization, over-fitting, regularization, minimum description length

1. Introduction

The problem of learning is often decomposed into the tasks of fitting parameters to some training
data, and then selecting the best model using heuristic or principled methods, collectively referred
to asmodel selectionmethods. Model selection methods range from simple yet powerful cross-
validation based methods to the optimization of cost functions penalized for model complexity,
derived from performance bounds or Bayesian priors.
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This paper is not intended as a general review of the state-of-the-art inmodel selection nor a
tutorial; instead it is a synthesis of the collection of papers that we have assembled. It also provides
a unifying perspective on Bayesian and frequentist methodologies usedin various model selection
methods. We highlight a new trend in research on model selection that blendsthese approaches.

The reader is expected to have some basic knowledge of familiar learning machines (linear mod-
els, neural networks, tree classifiers and kernel methods) and elementary notions of learning theory
(bias/variance tradeoff, model capacity or complexity, performance bounds). Novice readers are
directed to the companion paper (Guyon, 2009), which reviews basic learning machines, common
model selection techniques, and provides elements of learning theory.

When we started organizing workshops and competitions around the problem of model selection
(of which this collection of papers is the product), both theoreticians and practitioners welcomed us
with some scepticism; model selection being often viewed as somewhat “old hat”.Some think that
the problem is solved, others that it is not a problem at all! For Bayesian theoreticians, the prob-
lem of model selection is circumvented by averaging all models over the posterior distribution. For
risk minimization theoreticians (called “frequentists” by the Bayesians) the problem is solved by
minimizing performance bounds. For practitioners, the problem is solved using cross-validation.
However, looking more closely, most theoretically grounded methods of solving or circumventing
model selection have at least one hyper-parameter left somewhere, which ends up being optimized
by cross-validation. Cross-validation seems to be the universally accepted ultimate remedy. But it
has its dark sides: (a) there is no consensus on how to choose the fraction of examples reserved
training and for validation; (b) the overall learning problem may be prone toover-fitting the cross-
validation error (Cawley and Talbot, 2009). Therefore, from our point of view, the problem of
optimally dividing the learning problem into multiple levels of inference and optimally allocat-
ing training data to these various levels remains unsolved, motivating our efforts. From the novel
contributions we have gathered, we are pleased to see that researchers are going beyond the usual
Bayesian/frequentist divide to provide new creative solutions to those problems: we see the emer-
gence of multi-level optimization methods, which are both Bayesian and frequentist. How can that
be? Read on!

After explaining in Section 2 our notational conventions, we briefly review arange of different
Bayesian and frequentist approaches to model selection in Section 3, which we then unify in Sec-
tion 4 under the framework of multi-level optimization. Section 5 then presents theadvances made
by the authors of papers that we have edited. In Section 6, we open a discussion on advanced topics
and open problems. To facilitate reading, a glossary is appended; throughout the paper, words
found in the glossary are indicated in boldface.

2. Notations and Conventions

In its broadest sense,model selectiondesignates an ensemble of techniques used to select a model,
that best explains some data or phenomena, or best predicts future data,observations or the con-
sequences of actions. This broad definition encompasses both scientific and statistical modeling.
In this paper, we address only the problem of statistical modeling and are mostly concerned with
supervised learningfrom independently and identically distributed (i.i.d.) data. Extensions to
unsupervised learningand noni.i.d. cases will be discussed in Section 6.

The goal of supervised learning is to predict a target variabley∈ Y , which may be continuous
(regression ) or categorical or binary (classification ). The predictions are made using observations
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x from a domainX , often a vectorial space of dimensionn, the number of features. The data pairs
{x,y} are independently and identically distributed according to an unknown (butfixed) distribution
P(x,y) . A numbermof pairs drawn from that distribution are given, forming the training dataD =
{(xk,yk),k = 1, ...m}. We will denote byX = [xki], k = 1, ...m, i = 1, ...n, the matrix of dimensions
(m,n) whose rows are the training patterns and whose columns are the features.Finally, we denote
by y the column vector of dimensions(m,1) containing the target valuesyk.

There are several formulations of the supervised learning problem:

• Function approximation (induction) methods seek a functionf (calledmodelor learning
machine) belonging to a model classF , which minimizes a specified risk functional (or max-
imizes a certain utility). The goal is to minimize anexpected risk R[ f ] =

R

L( f (x),y) dP(x,y),
also calledgeneralization error, whereL( f (x),y) is a loss function (often a negative log like-
lihood) measuring the discrepancy betweenf (x) andy. SinceP(x,y) is unknown, only esti-
mates ofR[ f ] can be computed, which we callevaluation functionsor estimators. Function
approximation methods differ in the choice of evaluation function and optimizationalgo-
rithm and includerisk minimization , PAC leaning, maximum likelihood optimization ,
andMAP learning .

• Bayesian and ensemble methodsmake predictions according to model averages that are
convex combinations of modelsf ∈ F , that is, which belong to the convex closure of the
model classF ∗. Such methods differ in the type of model averaging performed.Bayesian
learning methods approximateEf (y|x) =

R

f∈F f (x) dP( f ), an expectation taken over a class
of modelsF , using an unknown probability distributionP( f ) over the models. Starting from
a “prior”, our knowledge of this distribution is refined into a “posterior” when we see some
data.Baggingensemble methods approximateED( f (x,D)), wheref (x,D) is a function from
the model classF , trained withm examples andED(·) is the mathematical expectation over
all training sets of sizem. The key point in these methods is to generate a diverse set of
functions, each providing a different perspective over the problem at hand, the ensemble thus
forming a concensus view.

• Transduction methods make direct predictions ofy givenx andX, bypassing the modeling
step. We do not address such methods in this paper.

The desired properties of the chosen predictor include: good generalization performance, fast
training/prediction, and ease of interpretation of the predictions. Even though all of these aspects
are important in practice, we will essentially focus on the first aspect: obtaining the best possible
generalization performance. Some of the other aspects of model selection will be discussed in
Section 6.

The parametrization off differentiates the problem ofmodel selectionfrom the general ma-
chine learning problem. Instead of parameterizingf with one set of parameters, the model se-
lection framework distinguishes betweenparametersandhyper-parameters. We adopt the simpli-
fied notation f (x;α,θ) for a model of parametersα and hyper-parametersθ. It should be un-
derstood that different models may be parameterized differently. Hence by f (x;αθ) we really
mean f (x;α(θ),θ) or fθ(x;α). For instance, for a linear modelf (x,w) = wTx, α = w; for a ker-
nel methodf (x,α) = ∑k αkK(x,xk), α = [αk]. The hyper-parameters may include indicators of
presence or absence of features, choice of preprocessing methods,, choice of algorithm or model
sub-class (e.g., linear models, neural networks, kernel methods, etc.),algorithm or model sub-class
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parameters (e.g., number of layers and units per layer in a neural network, maximum degree of a
polynomial, bandwidth of a kernel), choice of post-processing, etc. We also refer to the parame-
ters of the priorP( f ) in Bayesian/MAP learning and the parameters of theregularizer Ω[ f ] in
risk minimization as hyper-parameters even if the resulting predictor is not an explicit function
of those parameters, because they are used in the process of learning.In what follows, we relate
the problem of model selection to that ofhyper-parameter selection, taken in is broadest sense and
encompassing all the cases mentioned above.

We refer to the adjustment of the model parametersα as thefirst level of inference. When
data are split in several subsets for the purpose of training and evaluating models, we callmtr the
number oftraining examplesused to adjustα. If the hyper-parametersθ are adjusted from a subset
of data of sizemva, we call the examples used to adjust them at thissecond level of inferencethe
“validation sample”. Finally we callmte the number of test examples used to evaluate the final
model. The corresponding empirical estimates of theexpected risk R[ f ], denotedRtr [ f ], Rva[ f ], and
Rte[ f ], will be called respectivelytraining error, validation error, andtest error.

3. The Many Faces of Model Selection

In this section, we trackmodel selectionfrom various angles to finally reduce it to the unified view
of multilevel inference.

3.1 Is Model Selection “Really” a Problem?

It is legitimate to first question whether the distinction between parameters and hyper-parameters
is relevant. Splitting the learning problem into two levels of inference may be convenient for con-
ducting experiments. For example, combinations of preprocessing, feature selection, and post-
processing are easily performed by fixingθ and trainingα with off-the-shelf programs. But, the
distinction between parameters and hyper-parameters is more fundamental. For instance, in the
model class of kernel methodsf (x) = ∑kαkK(x,xk;θ), why couldn’t we treat bothα andθ as
regular parameters?

One common argument is that, for fixed values ofθ, the problem of learningα can be formu-
lated as a convex optimization problem, with a single unique solution, for which powerful math-
ematical programming packages are available, while the overall optimization ofα andθ in non-
convex. Another compelling argument is that, splitting the learning problem into several levels
might also benefit to the performance of the learning machine by “alleviating” (but not eliminat-
ing) the problem ofover-fitting . Consider for example the Gaussian redial basis function kernel
K(x,xk;θ) = exp(−‖x− xk‖

2/θ2). The function f (x) = ∑m
k=1 αkK(x,xk;θ) is a universal approx-

imator if θ is let to vary and if the sum runs over the training examples. If bothα and θ are
optimized simultaneously, solutions with a small value ofθ2 might be picked, having zero training
error but possibly very poor generalization performance. The model classF to which f belongs
has infinite capacityC(F ). In contrast, for a fixed value of the hyper-parameterθo, the model
f (x) = ∑m

k=1αkK(x,xk;θo) is linear in its parametersαk and has a finite capacity, bounded bym.
In addition, the capacity off (x) = ∑m

k=1α
o
kK(x,xo

k;θ) of parameterθ for fixed valuesαo
k andxo

k
is very low (to see that, note that very few examples can be learned without error by just varying
the kernel width, given fixed vectorsxo

k and fixed parametersαo
k). Hence,using multiple levels of

inference may reduce over-fitting, while still searching for solutions in a model class of universal
approximators.
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This last idea has been taken one step further in the method ofstructural risk minimization(Vap-
nik, 1979), by introducing new hyper-parameters in learning problems, which initially did not have
any. Consider for instance the class of linear modelsf (x) = ∑n

i=1wixi . It is possible to introduce
hyper-parameters by imposing a structure in parameter space. A classicalexample is the structure
‖w‖2 ≤ A, where‖w‖ denotes the Euclidean norm andA is a positive hyper-parameter. For increas-
ing values ofA the space of parameters is organized in nested subsets. Vapnik (1998) proves for
Support Vector Machines (SVM) and Bartlett (1997) for neural networks that tighter performance
bounds are obtained by increasingA. The newly introduced parameter allows us to monitor the
bias/variance tradeoff. Using a Lagrange multiplier, the problem may be replaced by that of min-
imizing a regularized risk functionalRreg = Rtr + γ‖w‖2, γ > 0, where the training loss function
is the so-called “hinge loss” (seee.g.,Hastie et al., 2000). The same regularizer‖w‖2 is used in
ridge regression (Hoerl, 1962), “weight decay” neural networks (Werbos, 1988), regularized radial-
basis function networks (Poggio and Girosi, 1990), Gaussian processes (MacKay, 1992), together
with the square loss function. Instead of the Euclidean norm or 2-norm, the1-norm regularizer
‖w‖1 = ∑i |wi | is used in LASSO (Tibshirani, 1994) and 1-norm versions of SVMs (seee.g.,Zhu
et al., 2003), logistic regression (Friedman et al., 2009), and Boosting (Rosset et al., 2004). Weston
et al. (2003) have proposed a 0-norm regularizer‖w‖0 = ∑i 1(wi), where1(x) = 1, if x 6= 0 and 0
otherwise.

Interestingly, each method stems from a different theoretical justification (some are Bayesian,
some are frequentist and some a a little bit of both like PAC-Bayesian bounds,see, for example,
Seeger, 2003, for a review), showing a beautiful example of theory convergence (Guyon, 2009).
Either way, for a fixed value of the hyper-parameterA or γ the complexity of the learning problem
is lower than that of the original problem. We can optimizeA or γ at a second level of inference, for
instance by cross-validation.

3.2 Bayesian Model Selection

In the Bayesian framework, there is no model selectionper se, since learning does not involve
searching for an optimum function, but averaging over a posterior distribution. For example, if the
model classF consists of modelsf (x;α,θ), the Bayesian assumption is that the parametersα and
hyper-parametersθ of the model used to generate the data are drawn from a priorP(α,θ). After
observing some dataD the predictions should be made according to:

Eα,θ(y|x,D) =
Z Z

f (x;α,θ) P(α,θ|D) dα dθ .

Hence there is no selection of a single model, but a summation over models in the model classF ,
weighed byP(α,θ|D). The problem is to integrate overP(α,θ|D).1 A two-level decomposition
can be made by factorizingP(α,θ|D) asP(α,θ|D) = P(α|θ,D)P(θ|D):

Eα,θ(y|x,D) =
Z

(

Z

f (x;α,θ)P(α|θ,D) dα

)

P(θ|D) dθ . (1)

Bayesian model selectiondecomposes the priorP(α,θ) into parameter priorP(α|θ) and a
“hyper-prior” P(θ). In MAP learning , the type-II likelihood (also called the “evidence”)P(D|θ) =

1. The calculation of the integral in closed form may be impossible to carry out; in this case, variational approxima-
tions are made or numerical simulations are performed, sampling fromP(α,θ|D), and replacing the integral by the
summation over a finite number of models.
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∑αP(D|α,θ)P(α|θ) is maximized with respect to the hyper-parametersθ (therefore assuming a
flat prior for θ), while the “regular” parametersα are obtained by maximizing the posteriorα

∗ =
argmaxαP(α|θ,D) = argmaxαP(D|α,θ)P(α|θ).2

3.3 Frequentist Model Selection

While Bayesians view probabilities as being realized in the idea of “prior” and“posterior” knowl-
edge of distributions, frequentists define probability in terms offrequencies of occurrence of events.
In this section, the “frequentist” approach is equated with risk minimization.

There are obvious ties between the problem ofmodel selectionand that ofperformance pre-
diction. Performance predictionis the problem of estimating theexpected riskor generalization
error R[ f ]. Model selectionis the problem of adjusting the capacity or complexity of the models
to the available amount of training data to avoid eitherunder-fitting or over-fitting . Solving the
performance predictionproblem would also solve themodel selectionproblem, but model selec-
tion is an easier problem. If we find an ordering indexr[ f ] such that for all pairs of functions
r[ f1] < r[ f2] ⇒ R[ f1] < R[ f2], then the index allows us to correctly carry outmodel selection. The-
oretical performance bounds providing aguaranteed riskhave been proposed as ranking indices
(Vapnik, 1998). Arguably, the tightness of the bound is of secondary importance in obtaining a
good ranking index. Bounds of the formr[ f ] = Rtr [ f ] + ε(C/mtr), whereC characterizes the ca-
pacity or complexity of the model class, penalizes complex models, but the penalty vanishes as
mtr → ∞. Some learning algorithms, for example, SVMs (Boser et al., 1992) or boosting (Freund
and Schapire, 1996), optimize aguaranteed riskrather than theempirical risk Rtr [ f ], and therefore
provide some guarantee of goodgeneralization. Algorithms derived in this way have an embedded
model selection mechanism. Other closely related penalty-based methods include BayesianMAP
learning andregularization.

Many models (and particularlycompound modelsincluding feature selection, preprocessing,
learning machine, and post-processing) are not associated with known performance bounds. Com-
mon practice among frequentists is to split available training data intomtr training examples to
adjust parameters andmva validation examples to adjust hyper-parameters. In an effort to reduce
variance, the validation errorRva[ f ] may be averaged over many data splits, leading to a cross-
validation (CV) estimatorRCV[ f ]. The most widely used CV method isK-fold cross-validation.
It consists in partitioning training data intoK ≃ (mtr + mva)/mva disjoint subsets of roughly equal
sizes (up to rounding errors), each corresponding to one validation set (the complement being used
as training set). In stratified cross-validation, the class proportions of thefull data sets are respected
in all subsets. The variance of the results may be reduced by performingQ times K-fold cross-
validation and averaging the results of theQ runs. Another popular method consists in holding out
a single example at a time for validation purposes. The resulting cross-validation error is referred
to as “leave-one-out” errorRLOO[ f ]. Some preliminary study design is necessary to determine the
sufficient amount of test data to obtain a good estimate of the generalization error (Langford, 2005),
the sufficient amount of training data to attain desired generalization performances, and an adequate
split of the training data between training and validation set. See Guyon (2009) for a discussion of
these issues.

2. In some Bayesian formulations of multi-layer Perceptrons, the evidence framework maximizes overθ but
marginalises over the weights, rather than maximizing, so in this case the MAPcan apply to the parameters or
the hyper-parameters or both.
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4. Multi-level Inference: A Unifying View of Model Selection

What is common among the various views of model selection is the idea of multiple levels of infer-
ence, each level corresponding to one set of parameters or hyper-parameters. Consider a two-level
case for a model classf (x;α,θ) parameterized by one set of parametersα and one set of hyper-
parametersθ. From the frequentist (risk minimization) point of view, instead of jointly optimizing
a risk functional with respect to all parametersα andθ, one creates a hierarchy of optimization
problems:3

f ∗∗ = argminθR2[ f
∗,D] , such that f ∗ = argminαR1[ f ,D] (2)

whereR1 andR2 are first and second level risk functionals.
From the Bayesian point of view, the goal is to estimate the integral of Equation1. There are

striking similarities between the two approaches. To make the similarity more obvious, we can
rewrite Equation 1 to make it look more like Equation 2, using the notationf ∗∗ for Eα,θ(y|x,D):

f ∗∗ =
Z

f ∗ e−R2 dθ , such that f ∗ =
Z

f e−R1 dα (3)

whereR1 = − lnP(α|θ,D) andR2 = − lnP(θ|D). Note that in Bayesian multi-level inferencef ∗

and f ∗∗ do not belong toF but toF ∗, the closure ofF under convex combinations.
More generally, we define amulti-level inference problemas a learning problem organized into

a hierarchy of learning problems. Formally, consider a machine learning toolkit which includes a
choice of learning machinesA [B,R], whereB is a model space of functionsf (x;θ), of parameters
θ andR is an evaluation function (e.g., a risk functional or a negative log posterior). We think
of A [B,R] not as a procedure, but as an “object”, in the sense of object orientedprogramming,
equipped with a method “train”, which processes data according to a trainingalgorithm:4

f ∗∗ = train(A [B,R2],D); (4)

This framework embodies the second level of inference of both Equations2 and 3. The solution
f ∗∗ belongs toB∗, the convex closure ofB. To implement the first level of inference, we will
consider thatB is itself a learning machine and not just a model space. Its model spaceF includes
functions f (x;θ,α) of variable parametersα (θ is fixed), which are adjusted by the “train” method
of B :

f ∗ = train(B[F ,R1],D); (5)

The solutionf ∗ belongs toF ∗, the convex closure ofF . The method “train” ofA should call
the method “train” ofB as a subroutine, because of the nested nature of the learning problems of
Equations 2 and 3. Notice that it is possible that different subsets of the data D are used at the
different levels of inference.

We easily see two obvious extensions:

(i) Multi-level inference:Equation 4 and 5 are formally equivalent, so this formalism can be
extended to more than two levels of inference.

3. It would be more correct if the argmin was assigned to parameters not functions, since the search domain is over
parameters, and writeθ∗∗ = argminθ R2[ f ∗,D] , such thatα∗ = argminα R1[ f ,D], f ∗ = f (x,α∗), but we adopt a
shorthand to emphasize the similarities between the frequentist and Bayesian approaches.

4. We adopt a Matlab-style notation: the first argument is the object of which the function is a method; the function
“train” is overloaded, there is one for each algorithm. The notations are inspired and adapted from the conventions
of the Spider package and the CLOP packages (Saffari and Guyon, 2006).
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(ii) Ensemble methods:The method “train” returns either a single model or a linear combination
of models, so the formalism can include all ensemble methods.

We propose in the next section a new classification ofmulti-level inferencemethods, orthogonal
to the classical Bayesian versus frequentist divide, referring to the way in which data are processed
rather than the means by which they are processed.

5. Advances in Multi-level Inference

We dedicate this section to reviewing the methods proposed in the collection of papers that we have
edited. We categorize multi-level inference modules, each implementing one level of inference, into
filter, wrapper, andembedded methods, borrowing from the conventional classification of feature
selection methods (Kohavi and John, 1997; Blum and Langley, 1997; Guyon et al., 2006a).Filters
are methods for narrowing down the model space, without training the learning machine. Such
methods include preprocessing, feature construction, kernel design,architecture design, choice of
prior or regularizers, choice of a noise model, and filter methods for feature selection. They consti-
tute the highest level of inference5. Wrapper methodsconsider the learning machine as a black-box
capable of learning from examples and making predictions once trained. They operate with a search
algorithm in hyper-parameter space (for example grid search or stochastic search) and an evalua-
tion function assessing the trained learning machine performances (for example the cross-validation
error or the Bayesian evidence). They are themiddle-wareof multi-level inference.Embedded
methods are similar to wrappers, but they exploit the knowledge of the learning machine algorithm
to make the search more efficient and eventually jointly optimize parameters and hyper-parameters,
using multi-level optimization algorithms. They are usually used at the lowest level of inference.

5.1 Filters

Filter methods include a broad class of techniques aiming to reduce the model spaceF prior to
training the learning machine. Such techniques may use “prior knowledge” or “domain knowledge”,
data from prior studies or from R&R (repeatability and reproducibility ) studies, and even the
training data themselves. But they do not produce the final model used to make predictions. Several
examples of filter methods are found in the collection of papers we have edited:

Preprocessing and feature construction.An important part of machine learning is to find a good
data representation, but choosing an appropriate data representation isvery domain depen-
dent. In benchmark experiments, it has often been found that generatinga large number of
low-level features yields better result than hand-crafting a few features incorporating a lot
of expert knowledge (Guyon et al., 2007). The feature set can then be pruned by feature
selection. In the challenges we have organized (Clopinet, 2004-2009) the data were gen-
erally already preprocessed to facilitate the work of the participants. However, additional
normalizations, space dimensionality reduction and discretization were often performed by
the participants. Of all space dimensionality reduction methodsPrincipal Component Anal-
ysis (PCA) remains the most widely used. Several top-ranking participants to challenges
we organized used PCA, including Neal and Zhang (2006), winners ofthe NIPS 2003 fea-
ture selection challenge, and Lutz (2006), winner of the WCCI 2006 performance prediction

5. Preprocessing is often thought of as a “low-level” operation. However, with respect to model selection, the selection
of preprocessing happens generally in the “outer loop” of selection, hence it is at the highest level.
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challenge.Clusteringis also a popular preprocessing method of dimensionality reduction,
championed by Saeed (2009) who used a Bernoulli mixture model as an input to an artificial
neural network. In his paper on data grid models Boullé (2009) proposes a new method of
data discretization. It can be used directly as part of a learning machine based on data grids
(stepwise constant predictors) or as a preprocessing to other learningmachines, such as the
Näıve Bayes classifier. Of particular interest in this paper is the use ofdata dependent priors.

Designing kernels and model architectures.Special purpose neural network architectures imple-
menting the idea of “weight sharing” such as Time Delay Neural Networks (Waibel, 1988) or
two-dimensional convolutional networks (LeCun et al., 1989) have proved to be very effec-
tive in speech and image processing. More recently a wide variety of special purpose kernels
have been proposed to incorporate domain knowledge in kernel learningalgorithms. Exam-
ples include kernels invariant under various transforms (Simard et al., 1993; Pozdnoukhov
and Bengio, 2006), string matching kernels (Watkins, 2000), and other sequence and tree ker-
nels (Vishwanathan and Smola, 2003). Along these lines, in our collection ofpapers, Chlóe
Agathe Azencott and Pierre Baldi have proposed two-dimensional kernels for high-thoughput
screening (Azencott and Baldi, 2009). Design effort has also be putinto general purpose ker-
nels. For instance, in the paper of Adankon and Cheriet (2009) , the SVM regularization
hyper-parameterC (box-constraint) is incorporated in the kernel function. This facilitates the
task of multi-level inference algorithms.

Defining regularizers or priors. Designing priorsP( f ) or regularizers Ω[ f ] or structuring pa-
rameter space into parameters and several levels of hyper-parameters can also be thought of
as a filter method. Most priors commonly used do not embed domain knowledge,they just
enforce Ockham’s razor by favoring simple (smooth) functions or eliminatingirrelevant fea-
tures. Priors are also often chosen out of convenience to facilitate the closed-form calculation
of Bayesian integrals (for instance the use of so-called “conjugate priors”, seee.g.,Neal and
Zhang, 2006). The 2-norm regularizerΩ[ f ] = ‖ f‖2

H
for kernel ridge regression, Support

Vector Machines (SVM) and Least-Square Support Vector Machines (LSSVM) have been
applied with success by many top-ranking participants of the challenges we organized. Gavin
Cawley was co-winner of the WCCI 2006 performance prediction challenge using LSSVMs
(Cawley, 2006). Another very successful regularizer is theAutomatic Relevance Determi-
nation (ARD) prior. This regularizer was used in the winning entry of Radford Neal in the
NIPS 2003 feature selection challenge (Neal and Zhang, 2006). GavinCawley also made top
ranking reference entries in the IJCNN 2007 ALvsPK challenge (Cawleyand Talbot, 2007b)
using a similar ARD prior. For linear models, the 1-norm regularizer‖w‖ is also popular
(seee.g.,Pranckeviciene and Somorjai, 2009), but this has not been quite as successful in
challenges as the 2-norm regularizer or the ARD prior.

Noise modeling.While the prior (or the regularizer) embeds our prior or domain knowledge of the
model class, the likelihood (or the loss function) embeds our prior knowledge of the noise
model on the predicted variabley. In regression, the square loss corresponds to Gaussian
noise model, but other choices are possible. For instance, recently, Gavin Cawley and Nicola
Talbot implemented Poisson regression for kernel machines (Cawley et al.,2007). For clas-
sification, the many loss functions proposed do not necessarily correspond to a noise model,
they are often just bounding the 0/1 loss and are used for computational convenience. In the
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Bayesian framework, an sigmoidal function is often used (like the logistic or probit functions)
to map the output of a discriminant functionf (xk) to probabilitiespk. Assuming target values
yk ∈ {0,1}, the likelihoodΠkpyk

k (1− pk)
1−yk corresponds to the cross-entropy cost function

∑k yk ln pk+(1−yk) ln(1−pk). A clever piece-wise S-shaped function, flat on the asymptotes,
was used in Chu et al. (2006) to implement sparsity for a Bayesian SVM algorithm. Noise
modeling is not limited to noise models for the targety, it also concerns modeling noise on
the input variablesx. Many authors have incorporated noise models onx as part of the kernel
design, for example, by enforcing invariance (Simard et al., 1993; Pozdnoukhov and Bengio,
2006). A simple but effective means of using a noise model is to generate additional training
data by distorting given training examples. Additional “unsupervised” datais often useful to
fit a noise model on the input variablesx. Repeatability and reproducibility (R&R) studies
may also provide data to fit a noise model.

Feature selection filters.Feature selection, as a filter method, allows us to reduce the dimension-
ality of the feature space, to ease the computations performed by learning machines. This
is often a necessary step for computationally expensive algorithms such asneural networks.
Radford Neal for instance, used filters based on univariate statistical tests to prune the fea-
ture space before applying his Bayesian neural network algorithm (Neal and Zhang, 2006).
Univariate filters were also widely used in the KDD cup 2009, which involvedclassification
tasks on a very large database, to cut down computations (Guyon et al., 2009b). Feature
selection filters are not limited to univariate filters. Markov blanket methods, for instance,
provide powerful feature selection filters (Aliferis et al., 2003). A review of filters for feature
selection can be found in Guyon et al. (2006a, Chapter 3).

5.2 Wrappers

Wrapper methods consider learning machines asblack boxescapable of internally adjusting their
parametersα given some dataD and some hyper-parameter valuesθ. No knowledge either of the
architecture, of the learning machines, or of their learning algorithm shouldbe required to use a
wrapper. Wrappers are applicable to selecting a classifier from amongst afinite set of learning
machines (θ is then a discrete index), or an infinite set (for continuous values ofθ). Wrappers can
also be used to build ensembles of learning machines, including Bayesian ensembles. Wrappers
use asearch algorithmor asampling algorithmto explore hyper-parameter space and anevaluation
function(a risk functionalRD[ f (θ)], a posterior probabilityP( f (θ)|D), or any model selection index
r[ f (θ)]) to assess the performance of the sample of trained learning machines , and, either select
one single best machine or create an ensemble of machine voting to make predictions.

Search and sampling algorithms.Because the learning machines in the wrapper setting are “black
boxes”, we cannot sample directly from the posterior distributionP( f (θ)|D) (or according to
exp−RD[ f (θ)] or exp−r[ f (θ)]). We can only compute the evaluation function for given
values ofθ for which we run the learning algorithm off (θ), which internally adjusts its
parametersα. A search strategydefines which hyper-parameter values will be considered
and in which order (in case a halting criterion ends the search prematurely). Gavin Caw-
ley, in his challenge winning entries, used the Nelder-Mead simplex algorithm (Cawley and
Talbot, 2007a).Monte-Carlo Markov Chain MCMC methods are used in Bayesian mod-
eling to sample the posterior probability and have given good results in challenges (Neal
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and Zhang, 2006). The resulting ensemble is a simple average of the sampledfunctions
F(x) = (1/s)∑s

i=1 f (x|θk). Wrappers forfeature selectionuse all sort of techniques, but se-
quentialforward selectionor backward eliminationmethods are most popular (Guyon et al.,
2006a, Chapter 4). Other stochastic search methods include biologically inspired methods
such asgenetic algorithmsandparticle swarm optimization. Good results have been obtained
with this last method in challenges (H. J. Escalante, 2009), showing that extensive search does
not necessarily yield over-fit solutions, if some regularization mechanism isused. The authors
of that paper rely for that purpose on weight decay and early stopping. Frequentist ensemble
methods, including Random Forests (Breiman, 2001) and Logitboost (Friedman et al., 2000)
also gave good results in challenges (Lutz, 2006; Tuv et al., 2009; Dahinden, 2009).

Evaluation functions. For Bayesian approaches, the standard evaluation function is the “evidence”,
that is the marginal likelihood (also called type-II likelihood) (Neal and Zhang, 2006), or, in
other words, the likelihood at the second level of inference. For frequentist approaches, the
most frequently used evaluation function is the cross-validation estimator. Specifically, K-
fold cross-validation is most often used (H. J. Escalante, 2009; Dahinden, 2009; Lutz, 2006;
Reunanen, 2007). The valuesK = 10 orK = 5 are typically used by practitioners regardless
of the difficulty of the problem (error rate, number of examples, number ofvariables). Com-
putational considerations motivate this choice, but the authors report a relative insensitivity
of the result in that range of values ofK. The leave-one-out (LOO) estimator is also used, but
due to its high variance, it should rather be avoided, except for computational reasons (see in
Section 5.3 cases in which the LOO error is inexpensive to compute). Theseestimators may
be poor predictors of the actual learning machine performances, but they are decent model se-
lection indices, provided that the same data splits are used to compute the evaluation function
for all models. Forbagging methods (like Random Forests, Breiman, 2001), the bootstrap
estimator is a natural choice: the “out-of-bag” samples, which are those samples not used
for training, are used to predict performance. Using empirical estimators at the second level
on inference poses the problem of possibly over-fitting them. Some authorsadvocate using
evaluation functions based on prediction risk bounds: Koo and Kil (2008) and Claeskens
et al. (2008) derive in this way information criteria for regression models (respectively called
“modulus of continuity information criterion” or MCIC and “kernel regression information
criterion” or KRIC) and Claeskens et al. (2008) and Pranckeviciene and Somorjai (2009)
propose information criteria for classification problems (respectively called “support vector
machine information criterion” SVMIC and “transvariation intensity”). The effectiveness of
these new criteria is compared empirically in the papers to the classical “Akaikeinformation
criterion” or AIC (Akaike, 1973) and the “Bayesian information criterion”or BIC (Schwarz,
1978).

5.3 Embedded Methods

Embedded methods are similar to wrappers. They need an evaluation functionand a search strategy
to explore hyper-parameter space. But, unlike wrapper methods, they exploit specific features of
the learning machine architecture and/or learning algorithm to perform multi-level inference. It is
easy to appreciate that knowledge of the nature and structure of a learning machine can allow us to
search hyper-parameter space in a more efficient way. For instance, the function f (x;α,θ) may be
differentiable with respect to hyper-parametersθ and it may be possible to usegradient descentto
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optimize an evaluation functionr[ f ]. Embedded methods have been attracting substantial attention
within the machine learning community in the past few years because of the mathematical elegance
of some of the new proposed methods.

Bayesian embedded methods.In the Bayesian framework, the embedded search, sampling or
summation over parameters and hyper-parameters is handled in an elegant and consistent
way by defining priors both for parameters and hyper-parameters, andcomputing the poste-
rior, perhaps in two steps, as indicated in Equation 3. Of course, it is more easily said than
done and the art is to find methods to carry out this integration, particularly when it is ana-
lytically intractable. Variational methods are often used to tackle that problem. Variational
methods convert a complex problem into a simpler problem, but the simplification introduces
additional “variational” parameters, which must then be optimized, hence introducing another
level of inference. Typically, the posterior is bounded from above by afamily of functions
parameterized by given variational parameters. Optimizing the variational parameters yields
the best approximation of the posterior (seee.g.,Seeger, 2008). Bayesian pragmatists opti-
mize the evidence (also called type-II likelihood or marginal likelihood) at the second level
of inference, but non-purists sometimes have a last recourse to cross-validation. The contri-
butions of Boulĺe (2007, 2009) stand out in that respect because they propose modelselection
methods for classification and regression, which have no last recourseto cross-validation, yet
performed well in recent benchmarks (Guyon et al., 2008a, 2009b). Such methods have been
recently extended to the less studied problem of rank regression (Hue and Boullé, 2007). The
methods used are Bayesian in spirit, but make use of original data-dependent priors.

Regularized functionals. In the frequentist framework, the choice of a prior is replaced by the
choice of a regularized functional. Those are two-part evaluation functions including the
empirical risk (or the negative log-likelihood) and a regularizer (or a prior). For kernel meth-
ods, a 2-norm regularizer is often used, yielding the classical penalizedfunctionalRreg[ f ] =
Remp[ f ]+ γ‖ f‖2

F . Pranckeviciene and Somorjai (2009) explore the possibilities offered by a
1-norm regularizer. Such approaches provide an embedded method offeature selection, since
the constraints thus imposed on the weight vector drive some weights to exactlyzero. We
emphasized in the introduction that, in some cases, decomposing the inferenceproblem into
multiple levels allows us to conveniently regain the convexity of the optimization problem
involved in learning. Ye et al. (2008) propose a multiple kernel learning (MKL) method, in
which the optimal kernel matrix is obtained as a linear combination of pre-specified kernel
matrices, which can be brought back to a convex program. Few approaches are fully embed-
ded and a wrapper is often used at the last level of inference. For instance, in kernel methods,
the kernel parameters may be optimized by gradient descent on the regularized functional,
but then the regularization parameter is selected by cross-validation. One approach is to use
a bound on the generalization error at the second level of inference. For instance, Guermeur
(2007) proposes such a bound for the multi-class SVM, which can be used to choose the
values of the “soft margin parameter” C and the kernel parameters. Cross-validation may be
preferred by practitioners because it has performed consistently well inbenchmarks (Guyon
et al., 2006b). This motivated Kunapuli et al. (2009) to integrate the search for optimal pa-
rameters and hyper-parameters into a multi-level optimization program, using a regularized
functional at the lower level, and cross-validation at the upper level. Another way of inte-
grating a second level of inference performed by cross-validation andthe optimization of
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a regularized functional at the first level of inference is to use a closed-form expression of
the leave-one-out error (or a bound) and optimize it by gradient descent or another classi-
cal optimization algorithm. Suchvirtual leave-one-outestimators, requiring training a single
classifier on all the data (seee.g.,Cawley and Talbot, 2007a; Debruyne et al., 2–8, in the
collection of papers we have assembled).

6. Advanced Topics and Open Problems

We have left aside many important aspects of model selection, which, spacepermitting, would
deserve a longer treatment. We briefly discuss them in this section.

6.1 Ensemble Methods

In Section 4, we have made an argument in favor of unifyingmodel selectionandensemble methods,
stemming either from a Bayesian or frequentist perspective, in the common framework ofmulti-
level optimization. In Sections 5.1, 5.2, and 5.3, we have given examples of model selection and
ensemble methods followingfilter, wrapper or embeddedstrategies. While this categorization
has the advantage of erasing the dogmatic origins of algorithms, it blurs some of the important
differences between model selection and ensemble methods. Ensemble methods can be thought of
as a way of circumventing model selection by voting among models rather than choosing a single
model. Recent challenges results have proved their effectiveness (Guyon et al., 2009b). Arguably,
model selection algorithms will remain important in applications where model simplicity and data
understanding prevail, but ever increasing computer power has brought ensemble methods to the
forefront of multi-level inference techniques. For that reason, we would like to single out those
papers of our collection that have proposed or applied ensemble methods:

Lutz (2006) used boosted shallow decision trees for his winning entries in two consecutive
challenges. Boosted decision trees have often ended up among the top ranking methods in other
challenges (Guyon et al., 2006a, 2009b). The particular implementation of Lutz of the Logitboost
algorithm (Friedman et al., 2000) use a “shrinkage” regularization hyper-parameter, which seems to
be key to attain good performance, and is adjusted by cross-validation as well as the total number of
base learners. Dahinden (2009) successfully applied the Random Forest (RF) algorithm (Breiman,
2001) in the performance prediction challenge (Guyon et al., 2006b). Shedemonstrated that with
minor adaptations (adjustment of the bias value for improved handling of unbalanced classes), the
RF algorithm can be applied without requiring user intervention. RF continues to be a popular and
successful method in challenges (Guyon et al., 2009b). The top rankingmodels use very large en-
sembles of hundreds of trees. One of the unique features of RF algorithmsis that they subsample
both the training examples and the features to build base learners. Using random subsets of fea-
tures seems to be a winning strategy, which was applied by others to ensemblesof trees using both
boosting and bagging (Tuv et al., 2009) and to other base learners (Nikulin, 2009). Boulĺe (2007)
also adopts the idea of creating ensembles using base learners constructed with different subsets
of features. Their base learner is the naı̈ve Bayes classifier and, instead of using random subsets,
they select subsets with a forward-backward method, using a maximum A Posteriori (MAP) eval-
uation function (hence not requiring cross-validation). The base learners are then combined with
an weighting scheme based on an information theoretic criterion, instead on weighting the mod-
els with the posterior probability as in Bayesian model averaging. This basically boils down to
using the logarithm of the posterior probabilities instead of the posterior probabilities themselves

73



GUYON, SAFFARI, DROR AND CAWLEY

for weighting the models. The weights have an interpretation in terms of model compressibility.
The authors show that this strategy outperforms Bayesian model averaging on several benchmark
data sets. This can be understood by the observation that when the posterior distribution is sharply
peaked around the posterior mode, averaging is almost the same as selectingthe MAP model. Ro-
bustness is introduced by performing a more balanced weighting of the baselearners. In contrast
with the methods we just mentioned, which choose identical base learners (trees of näıve Bayes),
other successful challenge participants have built heterogeneous ensembles of learning machines
(including, for example, linear models, kernel methods, trees, naı̈ve Bayes, and neural networks),
using cross-validation to evaluate their candidates for inclusion in the ensemble (Wichard, 2007;
IBM team, 2009). While Wichard (2007) evaluates classifiers independently, IBM team (2009) uses
a forward selection method, adding a new candidate in the ensemble based onthe new performance
of the ensemble.

6.2 PAC Bayes Approaches

Unifying Bayesian and frequentist model selection procedures under the umbrella ofmulti-level
inferencemay shed new light on correspondences between methods and have a practical impact on
the design of toolboxes incorporating model selection algorithms. But there are yet more synergies
to be exploited between the Bayesian and the frequentist framework. In thissection, we would like
to capture the spirit of the PAC Bayes approach and outline possible fruitful directions of research.

The PAC learning framework (Probably Approximately Correct), introduced by Valiant (1984)
and later recognized to closely resemble the approach of the Russian school popularized in the US
by Vapnik (1979), has become the beacon of frequentist learning theoretic approaches. It quantifies
the generalization performance (theCorrectaspect) of a learning machine via performance bounds
(theApproximateaspect) holding in probability (theProbableaspect):

Prob
[

(R[ f ]−Remp[ f ]) ≤ ε(δ)
]

≥ (1−δ) ,

In this equation, the confidence intervalε(δ) (Approximateaspect) bounds, with probability
(1−δ) (Probableaspect),the difference between theexpected riskor generalization errorR[ f ] and
theempirical risk6 Remp[ f ] (Correctaspect). Recently, many bounds have been proposed to quantify
the generalization performance of algorithms (seee.g.,Langford, 2005, for a review). The idea of
deriving new algorithms, which optimize a boundε(δ) (guaranteed riskoptimization) has been
popularized by the success of SVMs (Boser et al., 1992) and boosting (Freund and Schapire, 1996).

The PAC framework is rooted in the frequentist philosophy of defining probability in terms of
frequencies of occurrence of eventsand bounding differences between mathematical expectations
and frequencies of events, which vanish with increasingly large sample sizes (law of large numbers).
Yet, since the pioneering work of Haussler et al. (1994), many authors have proposed so-called
PAC-Bayes bounds. Such bounds assess the performance of existingBayesian algorithms (see
e.g.,Seeger, 2003), or are used to derive new Bayesian algorithms optimizing aguaranteed risk
functional (see Germain et al. 2009 and references therein).

This is an important paradigm shift, which bridges the gap between the frequentiststructural
risk minimizationapproach to model selection (Vapnik, 1998) and theBayesian priorapproach.

6. at the first level of inference, this would be the training errorRtr [ f ]; at the second level of inference this may be the
validation errorRva[ f ]
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It erases the need for assuming thatthe model used to fit the data comes from a concept space of
functions that generated the data. Instead, priors may be used to provide a “structure” on a chosen
model space (calledhypothesis spaceto distinguish it from theconcept space), which does not
necessarily coincide with theconcept space, of which we often know nothing. Reciprocally, we can
interpret structures imposed on a hypothesis space as our prior belief that certain models are going
to perform better than others (see, for instance, the examples at the end of Section 3.1).

This opens the door to also regularizing the second level of inference by using performance
bounds on the cross-validation error, as was done for instance in Cawley and Talbot (2007a) and
Guyon (2009).

6.3 Open Problems

• Domain knowledge: From the earliest embodiments of Okcham’s razor using the number
of free parameters to modern techniques of regularization and bi-level optimization, model
selection has come a long way. The problem of finding the right structure remains, the rights
prior or the right regularizer. Hence know-how and domain knowledge are still required. But
in a recent challenge we organized called “agnostic learningvs. prior knowledge” (Guyon
et al., 2008b) it appeared that the relatively small incremental improvements gained with prior
knowledge came at the expense of important human effort. In many domains,collecting more
data is less costly than hiring a domain expert. Hence there is pressure towards improving
machine learning toolboxes and, in particular equipping them with model selection tools. For
the competitions we organized (Clopinet, 2004-2009), we made a toolbox available with state-
of-the-art models (Saffari and Guyon, 2006), which we progressively augmented with the best
performing methods. The Particle Swarm Optimization (PSO) model selection methodcan
find the best models in the toolbox and reproduce the results of the challenges (H. J. Escalante,
2009). Much remains to be done to incorporate filter and wrapper model selection algorithms
in machine learning toolboxes.

• Unsupervised learning:Multi-level optimization and model selection are also central prob-
lems forunsupervised learning. When no target variable is available as “teaching signal”
one can still define regularized risk functionals and multi-level optimization problems (Smola
et al., 2001). Hyper-parameters (e.g., “number of clusters”) can be adjusted by optimizing a
second level objective such as model stability (Ben-Hur et al., 2002), which is an erzatz of
cross-validation. The primary difficulty with model selection for unsupervised learning is to
validate the selected model. To this day, there is no consensus on how to benchmark methods,
hence it is very difficult to quantify progress in this field. This is why we have so far shied
away from evaluating unsupervised learning algorithms, but this remains onour agenda.

• Semi-supervised learning:Very little has been done for model selection insemi-supervised
learning problems, in which only some training instances come with target values. Semi-
supervised tasks can be challenging for traditional model selection methods, such as cross-
validation, because the number of labeled data is often very small. Schuurmans and Southey
(2001) used the unlabeled data to test the consistency of a model, by defining a metric over
the hypothesis space. Similarly, Madani et al. (2005) introduced the co-validation method,
which uses the disagreement of various models on the predictions over the unlabeled data as
a model selection tool. In some cases there is no performance gain by using the unlabeled
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data for training (Singh et al., 2008). Deciding whether all or part of the unlabeled data should
be used for training (data selection) may also be considered a model selection problem.

• Non i.i.d. data: The problem of noni.i.d. data raises a number of other questions because
if there are significant differences between the distribution of the training and the test data,
the cross-validation estimator may be worthless. For instance, in causal discovery problems,
training data come from a “natural” distribution while test data come from a different “manip-
ulated” distribution (resulting from some manipulations of the system by an external agent,
like clamping a given variable to given values). Several causal graphsmay be consistent with
the “natural distribution” (not just with the training data, with the true unknowndistribution),
but yield very different predictions of manipulated data. Rather selecting asingle model, it
make more sense to select a model class. We have started a program of dataexchange and
benchmarks to evaluate solutions to such problems (Guyon et al., 2008a, 2009a).

• Computational considerations:The selection of the model best suited to a given application
is a multi-dimensional problem in which prediction performance is only one of thedimen-
sions. Speed of model building and processing efficiency of deployed models are also impor-
tant considerations. Model selection algorithms (or ensemble methods) which often require
many models to be trained (e.g., wrapper methods with extensive search strategies and using
cross-validation to validate models) may be unable to build solutions in a timely manner. At
the expense of some acceptable loss in prediction performance, methods using greedy search
strategies(like forward selection methods) andsingle-pass evaluation functions(requiring
the training of only a single model to evaluate a given hyper-parameter choice), may consid-
erably cut the training time. Greedy search methods include forward selection and backward
elimination methods. Single-pass evaluation functions include penalized trainingerror func-
tionals (regularized functionals, MAP estimates) and virtual-leave-one-out estimators. The
latter allows users to compute the leave-one-out-error at almost no additional computational
expense than training a single predictor on all the training data (seee.g.,Guyon et al., 2006a,
Chapter 2, for a review). Other tricks-of-the-trade include followingregularization paths
to sample the hyper-parameter space more effectively (Rosset and Zhu,2006; Hastie et al.,
2004). For some models, the evaluation function is piecewise linear between afew discon-
tinuous changes occurring for a few finite hyper-parameter values. The whole path can be
reconstructed from only the values of the evaluation function at those given points. Finally,
Reunanen (2007) proposed clever ways of organizing nested cross-validation evaluations in
multiple level of inference model selection using cross-indexing. The author also explored
the idea of spending more time to refine the evaluation of the most promising models.Further
work needs to be put into model selection methods, which simultaneously address multiple
objectives, including optimizing prediction performance and computational cost.

7. Conclusion

In the past twenty years, much effort has been expended towards finding the best regularized func-
tionals. The many embodiments of Ockham’s razor in machine learning have converged towards
similar regularizers. Yet, the problem of model selection remains because weneed to optimize the
regularization parameter(s) and often we need to select among various preprocessings, learning ma-
chines, and post-processings. In the proceedings of three of the challenges we organized around the
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problem of model selection, we have collected a large number of papers, which testify to the vivid
activity of the field. Several researchers do not hesitate to propose heretic approaches transcending
the usual “frequentist” or Bayesian dogma. We have seen the idea of using the Bayesian machin-
ery to design regularizers with “data-dependent priors” emerge (Boullé, 2007, 2009), much like a
few years ago data-dependent performance bounds (Bartlett, 1997;Vapnik, 1998) and PAC-Bayes
bounds (Haussler et al., 1994; Seeger, 2003) revolutionized the “frequentist” camp, up to then very
fond of uniform convergence bounds and the VC-dimension (Vapnik and Chervonenkis, 1971). We
have also seen the introduction of regularization of cross-validation estimators using Bayesian pri-
ors (Cawley and Talbot, 2007a). Ensemble methods may be thought of as a way of circumventing
model selection. Rather, we think of model selection and ensemble methods as two options to
perform multi-level inference, which can be formalized in a unified way.

Within this general framework, we have categorized approaches intofilter, wrapperandembed-
dedmethods. These methods complement each other and we hope that in a not too distant future,
they will be integrated into a consistent methodology: Filters first can prune model space; Wrappers
can perform an outer level model selection to select pre/post processings and feature subsets; Em-
bedded methods can perform an inner level hyper-parameter selection integrated within a bi-level
optimization program. We conclude that we are moving towards a unified framework for model
selection and there is a beneficial synergy between methods, both from a theoretical and from a
practical perspective.
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Appendix A. Glossary

Automatic Relevance Determination (ARD) prior. The ARD prior was invented for neural net-
works (MacKay, 1992): all network input variables and all neuron outputs (internal features)
are weighed by a scaling factorκi , before being independently weighted by the network con-
nections. A hyper-prior must be chosen to favor small values of theκi , which makes the
influence of irrelevant variables or features naturally fade away. Forkernel methods, ARD
falls under the same framework as the‖ f‖2

H
regularizer, for a special class of kernels using

variable (feature) scaling factors. For instance, the ARD prior is implemented by defining the
Gaussian kernel (for positive hyper-parametersκi):

K(xh,xk) = exp

{

−
n

∑
j=1

κi(xh, j −xk, j)
2

}

instead of the regular Gaussian kernelK(xh,xk) = exp
{

−κ‖xh−xk‖
2
}

.

Base learner. In an ensemble method, the individual learning machines that are part of theensem-
ble.
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Bagging. Bagging stands for bootstrap aggregating. Bagging is a parallel ensemblemethod (all
base learnersare built independently from training data subsets). Several data subsets of
sizem are drawn independently with replacement from the training set ofm examples. On
average each subset thus built contains approximately 2/3 of the training examples. The en-
semble predictions are made by averaging the predictions of the baser learners. The ensemble
approximatesED( f (x,D)), where f (x,D) is a function from the model class F, trained with
m examples andED(.) is the mathematical expectation over all training sets of sizem. The
rationale comes from thebias/variance decompositionof the generalization error. The
“out-of-bag” samples (samples not used for learning for each data subset drawn for training)
may be used to create a bootstrap prediction of performance.

Bayesian learning. Under the Bayesian framework, it is assumed that the data were generated
from a double random process: (1) a model is first drawn according toa prior distribution
in a concept space; (2) data are produced using the model. In the particular case of super-
vised learning, as formaximum likelihood learning, a three-part data generative model is
assumed:P(x), f ∈F , and a zero-mean noise model. But, it is also assumed that the function
f was drawn according to a prior distributionP( f ). This allows us to compute the probability
of an outputy given an inputx, P(y|x) =

R

f∈F P(y|x, f )dP( f ), or its mathematical expecta-
tion E(y|x) =

R

f∈F f (x)dP( f ), averaging out the noise. After training dataD are observed,
the priorP( f ) is replaced by theposterior P( f |D). The mathematical expectation ofy given
x is estimated as:E(y|x,D) =

R

f∈F f (x)dP( f |D). Hence, learning consists of calculating the
posterior distributionP( f |D) and integrating over it. The predictions are made according to
E(y|x,D), a function not necessarily belonging toF . In the case of classification,E(y|x,D)
does not take values inY (although thresholding the output just takes care of the problem).
If we want a model inF , we can use the Gibbs algorithm, which picks one sample inF ac-
cording to the posterior distributionP( f |D), or use theMAP learning approach. In Bayesian
learning, analytically integrating over the posterior distribution is often impossible and the
integral may be approximated by finite sum of models, weighted by positive coefficients (see
variational methods) or by sampling models from the posterior distribution (seeWeighted
majority algorithm andMonte-Carlo Markov Chain or MCMC). The resulting estimators
of Ê(y|x,D) are convex combinations of functions inF and, in that sense, Bayesian learning
is similar toensemble methods.

Bias/variance decomposition.In the case of a least-square loss, the bias/variance decomposition
is given byED[( f (x;D)−E[y|x])2] = (ED[ f (x;D)]−E(y|x))2+ED[( f (x;D)−ED[ f (x;D)])2].
The second term (the “variance” of the estimatorf (x,D)) vanishes iff (x;D) equalsED[ f (x;D).
The motivates the idea of using an approximation ofED[ f (x;D) as a predictor. Inbagging
the approximation is obtained by averaging over functions trained frommexamples drawn at
random with replacement from the training setD (bootstrap method). The method works best
if F is not biased (i.e., containsE(y|x)). Most models with low bias have a high variance and
vice versa, hence the well-known bias/variance tradeoff.

Concept space.A space of data generative models from which the data are drawn. Not to be
confused withmodel spaceor hypothesis space.

Empirical risk. An estimator of theexpected risk that is the average of the loss over a finite
number of examples drawn according toP(x,y): Remp= (1/m)∑m

k=1L( f (xk),yk).
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Ensemble methods.Methods of building predictors using multiplebase learners, which vote to
make predictions. Predictions ofy are made using a convex combination of functionsf j ∈ F :
F(x) = ∑ j p j f j(x), wherep j are positive coefficients. The two most prominent ensemble
methods are bagging (Breiman, 1996) and boosting (Freund and Schapire, 1996). Bagging
is a parallel ensemble method (all trees are built independently from training data subsets),
while boosting is a serial ensemble method (trees complementing each other are progres-
sively added to decrease the residual error). Random Forests (RF)(Breiman, 2001) are a
variant of bagging methods in which both features and examples are subsampled. Boosting
methods come in various flavors including Adaboost, Gentleboost, and Logitboost. The orig-
inal algorithm builds successive models (called “weak learners”) by resampling data in a way
that emphasizes examples that have proved hardest to learn. Newer versions use a weighting
scheme instead of resampling (Friedman, 2000).

Expected risk. The mathematical expectation of a risk functional over the unknown probability
distributionP(x,y): R[ f ] =

R

L( f (x),y) dP(x,y). Also calledgeneralization error.

Generalization error. Seeexpected risk.

Greedy search strategy.A search strategy, which does not revisit partial decisions already made,
is called “greedy”. Examples include forward selection and backward elimination in feature
selection.

Guaranteed risk. A bound on theexpected risk. SeePAC learning andStructural Risk Mini-
mization (SRM).

Hypothesis space.A space of models, which are fit to data, not necessarily identical to theconcept
space(which is often unknown).

Loss function. A functionL( f (x),y), which measures the discrepancy between target valuesy and
model predictionsf (x). Examples include the square loss(y− f (x))2 for regression of the
0/1 loss1[ f (x) 6= y] for classification).

MAP learning. Maximum a posteriori (MAP) learning shares the same framework as Bayesian
learning, but it is further assumed that the posteriorP( f |D) is concentrated and thatE(y|x,D)
can be approximated byf ∗(x), with f ∗ = argmaxf P( f |D) = argmaxf P(D| f )P( f ) =
argminf − lnP(D| f )− lnP( f ). If we assume a uniform prior, we are brought back to maxi-
mum likelihood learning. If bothP(D| f ) andP( f ) are exponentially distributed (P(y|x, f ) =
exp−L( f (x),y) andP( f ) = exp−Ω[ f ]), then MAP learning is equivalent to the minimiza-
tion of a regularized risk functional.

Maximum likelihood learning. It is assumed that the data were generated by an input distribution
P(x), a functionf from amodel spaceF coinciding with theconcept space, and a zero-mean
noise model. For regression, for instance, if Gaussian noiseε∼N (0,σ2) is assumed,y is dis-
tributed according toP(y|x, f ) =N ( f (x),σ2). In the simplest case,P(x) and the noise model
are not subject to training (the values ofx are fixed and the noise model is known). Learn-
ing then consists in searching for the functionf ∗, which maximizes the likelihoodP(D| f ),
or equivalently (sinceP(x) is not subject to training)f ∗ =argmaxf P(y|X, f ) =argminf −
lnP(y|X, f ). With the i.i.d. assumption,f ∗ =argmaxf Πm

k=1P(yk|xk, f ) =argminf ∑m
k=1−
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lnP(yk|xk, f ). For distributions belonging to the exponential familyP(y|x, f ) =
exp{−L( f (x),y)}, the maximum likelihood method is equivalent to the method of mini-
mizing theempirical risk . In the case of Gaussian noise, this corresponds to the method of
least squares.

Model space.A space of predictive models, which are fit to data. Synonym ofhypothesis space.
For Bayesian models, also generally coincides with theconcept space, but not for frequen-
tists.

Monte-Carlo Markov Chain (MCMC) method. To approximate Bayesian integrals one can sam-
ple from the posterior distributionP( f |D) following a Monte-Carlo Markov chain (MCMC),
then make predictions according toÊ(y|x,D) = ∑ j f j(x). In a MCMC, at each step new can-
didate modelsf j ∈ F are considered, in a local neighborhood of the model selected at the
previous step. The new model is accepted if it provides a better fit to the dataaccording to the
posterior distribution or, if not, a random decision is made to accept it, following the Gibbs
distribution (better models having a greater chance of acceptance).

Over-fitting avoidance. Model selection is traditionally associated with the so-called problem of
over-fitting avoidance. Over-fitting means fitting the training examples well (i.e., obtaining
large model likelihood or low empirical risk values, computed from training data), but gen-
eralizing poorly on new test examples. Over-fitting is usually blamed on too large a large
number of free parameters to be estimated, relative to the available number of training ex-
amples. The most basic model selection strategy is therefore to restrict the number of free
parameters according to “strict necessity”. This heuristic strategy is usually traced back in
history to the principle known as Ockham’s razor “Plurilitas non est ponenda sin necessitate”
(William of Ockham, 14th century). In other words, of two theories providing similarly good
predictions, the simplest one should be preferred, that is, shave off unnecessary parameters.
Most modern model selection strategies claim some affiliation with Ockham’s razor, but the
number of free parameters is replaced by a measure ofcapacity or complexity of the model
class,C[F ]. Intuitively, model classes with largeC[F ] may include the correct model, but it
is hard to find. In this case, even models with a low training error may have a large gener-
alization error (high “variance”; over-fitting problem). Conversely, model classes with small
C[F ] may yield “biased” models, that is, with both high training and generalization error
(under-fitting). Seebias/variance decomposition..

PAC learning. The “probably approximately correct” (PAC) learning procedures, seek a function
minimizing aguaranteed risk Rgua[ f ] = Remp[ f ]+ ε(C,δ) such that with (high) probability
(1−δ), R[ f ] ≤ Rgua[ f ]. C is a measure of capacity or complexity.

Regularizers and regularization. The regularization method consists of replacing the minimiza-
tion of the empirical risk Remp[ f ] by that of Rreg[ f ] = Remp+ Ω[ f ]. A regularizerΩ[ f ]
is a functional penalizing “complex” functions. If bothRtr [ f ] and Ω[ f ] are convex, there
is a unique minimum ofRreg[ f ] with respect tof . In MAP learning , − lnP( f ) can be
thought of as aregularizer. One particularly successful regularizer is the 2-norm regular-
izer ‖ f‖2

H
for model functionsf (x) = ∑m

k=1 αkK(x,xk) belonging to a Reproducing Kernel
Hilbert SpaceH (kernel methods). In the particular case of the linear modelf (x) = w · x,
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we have‖ f‖2
H

= ‖w‖2, a commonly used regularized found in many algorithms includ-
ing ridge regression (Hoerl, 1962) and SVMs (Boser et al., 1992). Inthe general case,
‖ f‖2

H
= fK−1f = α

TKα, wheref = [ f (xk)]
m
k=1 is the vector of predictions of the training

examples,α = [αk]
m
k=1 and K = [K(xh,xk], h = 1, ...m k= 1, ...m. Due to the duality be-

tween RKHS and stochastic processes (Wahba, 1990), the functions in the RKHS can also
be explained as a family of random variables in a Gaussian process, assuming a priorP( f )
proportional to exp(−γ‖ f‖H ) = exp(−γfK−1f) and the kernel matrix K is interpreted as a
covariance matrixK(xh,xk) =cov[ f (xk), f (xk)].

Risk minimization. Given amodel spaceor hypothesis spaceF of functionsy = f (x), and a
loss functionL( f (x),y), we want to find the functionf ∗ ∈ F that minimizes theexpected
risk R[ f ] =

R

L( f (x),y) dP(x,y). SinceP(x,y) is unknown, only estimations ofR[ f ] can be
computed. The simplest estimator is the average of the loss over a finite number of exam-
ples drawn according toP(x,y) called theempirical risk : Remp= (1/m)∑m

k=1L( f (xk),yk).
The minimization of the empirical risk is the basis of many machine learning approaches
to selectingf ∗, but minimizing regularized risk functionals is often preferred. Seeregular-
ization. Also, related are thePAC learning procedures and the method ofStructural Risk
Minimization (SRM).

Search strategy.There areoptimal search strategies, which guarantee that the optimum of the
evaluation function will be found, including theexhaustive searchmethod, for discrete hyper-
parameter spaces. The populargrid searchmethod for continuous hyper-parameter spaces
performs an exhaustive search, up to a certain precision. A relatedstochastic searchmethod
is uniform sampling. Uniformly sampling parameter space may be computationally expensive
and inefficient. If we use a non-uniform distributionG(θ) to sample hyper-parameter space,
which resemblesP( f (θ)|D), the search can be made more efficient. This idea is exploited in
rejection samplingandimportance sampling: according to these methods a Bayesian ensem-
ble F(x) = ∑k wk f (x;θk) would use weightwk proportional toP( f (θ)|D)/G(θ). Because of
the computational burden of (near) optimum strategies, other strategies areoften employed,
usually yielding only alocal optimum. These includesequential search strategiessuch as
coordinate ascentor descent (making small steps along coordinate axes) orpattern search
(Momma and Bennett, 2002) (making local steps according to a certain pattern), which, by
accepting only moves that improve the evaluation function, find the local optimumnearest
to the starting point. Some stochastic search methods accept moves not necessarily improv-
ing the value of the evaluation function, like simulated annealing orMarkov chain Monte
Carlo (MCMC) methods. Both methods accept all moves improving the evaluation function
and some moves that do not, for example, with probability exp−∆r/T, where T is a posi-
tive parameter (T=1 for MCMC and progressively diminishes for simulated annealing). Such
stochastic methods search hyper-parameter space more intensively and do not become stuck
in the nearest local optimum of the evaluation function.

Semi-supervised learning.In semi-supervised learning, in addition to the labeled data, the learn-
ing machine is given a (possibly large) set of unlabeled data. Such unlabeled data may be
used for training or model selection.

Structural Risk Minimization. The method of Structural Risk Minimization (SRM) provides aeans
of building regularized risk functionals (seeRegularization), using the idea ofguaranteed
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risk minimization, but not requiring the calculation of the model class capacity or complex-
ity, which is often unknown or hard to compute. In the risk minimization framework, it is not
assumed that the model space includes a function or “concept”, which generated the data (see
concept spaceandhypothesis space).

Supervised learning. Learning with teaching signal or targety.

Under-fitting. While over-fitting is the problem of learning the training data too well the expense
of a largegeneralization error, under-fitting is the problem of having a too weak model not
even capable of learning the training data and also generalizing poorly.

Unsupervised learning. Learning in the absence of teaching signal or targety.

Weighted majority algorithm. To approximate Bayesian integrals one can draw samplesf j uni-
formly from the model space of functionsF and make predictions according toÊ(y|x,D) =

∑ j P( f j |D) f j(x).
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C. Hue and M. Boulĺe. A new probabilistic approach in rank regression with optimal Bayesian
partitioning. In I. Guyon and A. Saffari, editors,JMLR, Special Topic on Model Selection, vol-
ume 8, pages 2727–2754, Dec 2007. URLhttp://www.jmlr.org/papers/volume8/hue07a/
hue07a.pdf.

IBM team. Winning the KDD cup orange challenge with ensemble selection. InKDD cup 2009, in
press, volume 8. JMLR W&CP, 2009.

R. Kohavi and G. John. Wrappers for feature selection.Artificial Intelligence, 97(1-2):273–324,
December 1997.

I. Koo and R. M. Kil. Model selection for regression with continuous kernel functions using the
modulus of continuity. In I. Guyon and A. Saffari, editors,JMLR, Special Topic on Model Selec-
tion, volume 9, pages 2607–2633, Nov 2008. URLhttp://www.jmlr.org/papers/volume9/
koo08b/koo08b.pdf.

G. Kunapuli, J.-S. Pang, and K. Bennett. Bilevel cross-validation-based model selection. In
I. Guyon, et al., editor,Hands on Pattern Recognition. Microtome, 2009.

J. Langford. Tutorial on practical prediction theory for classification.JMLR, 6:273–306, Mar 2005.
URL http://jmlr.csail.mit.edu/papers/volume6/langford05a/langford05a.pdf.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel.
Backpropagation applied to handwritten zip code recognition.Neural Computation, 1:541 – 551,
1989.

R. W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge
datasets. InProc. IJCNN06, pages 2966–2969, Vancouver, Canada, July 2006. INNS/IEEE.

D. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation,
4:448–472, 1992.

O. Madani, D. M. Pennock, and G. W. Flake. Co-validation: Using model disagreement to validate
classification algorithms. InNIPS, 2005.

M. Momma and K. Bennett. A pattern search method for model selection of Support Vector Re-
gression. InIn Proceedings of the SIAM International Conference on Data Mining. SIAM, 2002.

85



GUYON, SAFFARI, DROR AND CAWLEY

R. Neal and J. Zhang. High dimensional classification with Bayesian neural networks and dirichlet
diffusion trees. In I. Guyon, et al., editor,Feature Extraction, Foundations and Applications,
2006.

V. Nikulin. Classification with random sets, boosting and distance-based clustering. In
I. Guyon, et al., editor,Hands on Pattern Recognition. Microtome, 2009.

T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer
networks.Science, 247(4945):978 – 982, February 1990.

A. Pozdnoukhov and S. Bengio. Invariances in kernel methods: Fromsamples to objects.Pattern
Recogn. Lett., 27(10):1087–1097, 2006. ISSN 0167-8655.

E. Pranckeviciene and R. Somorjai. Liknon feature selection: Behind the scenes. In I. Guyon, et al.,
editor,Hands on Pattern Recognition. Microtome, 2009.

J. Reunanen. Model selection and assessment using cross-indexing.In Proc. IJCNN07, Orlando,
Florida, Aug 2007. INNS/IEEE.

S. Rosset and J. Zhu. Sparse, flexible and efficient modeling using L1 regularization. In
I. Guyon, et al., editor,Feature Extraction, Foundations and Applications, 2006.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximummargin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

M. Saeed. Hybrid learning using mixture models and artificial neural networks. In I. Guyon, et al.,
editor,Hands on Pattern Recognition. Microtome, 2009.

A. Saffari and I. Guyon. Quick start guide for CLOP. Technical report, Graz University of Tech-
nology and Clopinet, May 2006. URLhttp://clopinet.com/CLOP/.

D. Schuurmans and F. Southey. Metric-based methods for adaptive model selection and regulariza-
tion. Machine Learning, Special Issue on New Methods for Model Selection and Model Combi-
nation, 48:51–84, 2001.

G. Schwarz. Estimating the dimension of a model.The Annals of Statistics, 6(2):461–464, 1978.

M. Seeger. PAC-Bayesian generalisation error bounds for Gaussianprocess classification.
JMLR, 3:233–269, 2003. URLhttp://jmlr.csail.mit.edu/papers/volume3/seeger02a/
seeger02a.pdf.

M. Seeger. Bayesian inference and optimal design for the sparse linearmodel. JMLR, 9:759–813,
2008. ISSN 1533-7928.

P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition usinga new transformation dis-
tance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors,Advances in Neural Information
Processing Systems 5, pages 50–58, San Mateo, CA, 1993. Morgan Kaufmann.

A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn’t. In NIPS, 2008.

86



MODEL SELECTION
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