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Abstract

The principle of parsimony also known as “Ockham’s razor$ lrespired many theories of model
selection. Yet such theories, all making arguments in fafparsimony, are based on very different
premises and have developed distinct methodologies teedalgorithms. We have organized chal-
lenges and edited a special issue of JMLR and several cocfem@oceedings around the theme of
model selection. In this editorial, we revisit the problefhaeoiding overfitting in light of the latest
results. We note the remarkable convergence of theorieffeiedt as Bayesian theory, Minimum
Description Length, bias/variance tradeoff, StructurekRMinimization, and regularization, in
some approaches. We also present new and interesting eeaofghe complementarity of theo-
ries leading to hybrid algorithms, neither frequentist, Bayesian, or perhaps both frequentist and
Bayesian!

Keywords: model selection, ensemble methods, multilevel inferenuafilevel optimization,
performance prediction, bias-variance tradeoff, Bayepr#ors, structural risk minimization, guar-
anteed risk minimization, over-fitting, regularizationinimum description length

1. Introduction

The problem of learning is often decomposed into the tasks of fitting parametesome training
data, and then selecting the best model using heuristic or principled metloddsticely referred

to asmodel selectiomethods. Model selection methods range from simple yet powerful cross-
validation based methods to the optimization of cost functions penalized forl roonglexity,
derived from performance bounds or Bayesian priors.
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This paper is not intended as a general review of the state-of-the-arbdiel selection nor a
tutorial; instead it is a synthesis of the collection of papers that we havenbkesk It also provides
a unifying perspective on Bayesian and frequentist methodologiessadous model selection
methods. We highlight a new trend in research on model selection that blersdsapproaches.

The reader is expected to have some basic knowledge of familiar learnimgmaa¢linear mod-
els, neural networks, tree classifiers and kernel methods) and eleyneoti@ns of learning theory
(bias/variance tradeoff, model capacity or complexity, performancads)u Novice readers are
directed to the companion paper (Guyon, 2009), which reviews basiirigamachines, common
model selection techniques, and provides elements of learning theory.

When we started organizing workshops and competitions around theprobfeodel selection
(of which this collection of papers is the product), both theoreticians aatiponers welcomed us
with some scepticism; model selection being often viewed as somewhat “oldSwatie think that
the problem is solved, others that it is not a problem at all! For Bayesiamdtieians, the prob-
lem of model selection is circumvented by averaging all models over the ostistribution. For
risk minimization theoreticians (called “frequentists” by the Bayesians) thelgmois solved by
minimizing performance bounds. For practitioners, the problem is solvedy asirss-validation.
However, looking more closely, most theoretically grounded methods oifhgobr circumventing
model selection have at least one hyper-parameter left somewheré, evids up being optimized
by cross-validation. Cross-validation seems to be the universally adcefpteate remedy. But it
has its dark sides: (a) there is no consensus on how to choose thenfraicémamples reserved
training and for validation; (b) the overall learning problem may be prorevés-fitting the cross-
validation error (Cawley and Talbot, 2009). Therefore, from our pofrview, the problem of
optimally dividing the learning problem into multiple levels of inference and optimélbcat-
ing training data to these various levels remains unsolved, motivating outsefferom the novel
contributions we have gathered, we are pleased to see that ressanehgning beyond the usual
Bayesian/frequentist divide to provide new creative solutions to thad®#gms: we see the emer-
gence of multi-level optimization methods, which are both Bayesian and inégueHow can that
be? Read on!

After explaining in Section 2 our notational conventions, we briefly reviearnge of different
Bayesian and frequentist approaches to model selection in Section 3\ whithen unify in Sec-
tion 4 under the framework of multi-level optimization. Section 5 then presentstvences made
by the authors of papers that we have edited. In Section 6, we operuasi@t on advanced topics
and open problems. To facilitate reading, a glossary is appended; boaiuthe paper, words
found in the glossary are indicated in boldface.

2. Notations and Conventions

In its broadest sensejodel selectiomlesignates an ensemble of techniques used to select a model,
that best explains some data or phenomena, or best predicts futurelsgayations or the con-
sequences of actions. This broad definition encompasses both sciemdifitagistical modeling.
In this paper, we address only the problem of statistical modeling and aréyrnoscerned with
supervised learningfrom independently and identically distributeid.fl.) data. Extensions to
unsupervised learningand noni.i.d. cases will be discussed in Section 6.

The goal of supervised learning is to predict a target variglae)y’, which may be continuous
(regression ) or categorical or binary (classification ). The predistema made using observations

62



MODEL SELECTION

x from a domainX, often a vectorial space of dimensianthe number of features. The data pairs
{X,y} are independently and identically distributed according to an unknowfixed) distribution
P(x,y) . A numberm of pairs drawn from that distribution are given, forming the training data
{(Xk; k), k= 1,...m}. We will denote byX = [], k=1,..m,i = 1,...n, the matrix of dimensions
(m,n) whose rows are the training patterns and whose columns are the fe&timah;, we denote
by y the column vector of dimensiorie, 1) containing the target valueg.

There are several formulations of the supervised learning problem:

e Function approximation (induction) methods seek a functidn(called modelor learning
maching belonging to a model clagg, which minimizes a specified risk functional (or max-
imizes a certain utility). The goal is to minimize erpected risk R| = [ £L(f(x),y) dP(x,y),
also calledeneralization errorwhere£L( f(x),y) is a loss function (often a negative log like-
lihood) measuring the discrepancy betwdér) andy. SinceP(x,y) is unknown, only esti-
mates ofR[f] can be computed, which we calaluation function®r estimators Function
approximation methods differ in the choice of evaluation function and optimizaitigor
rithm and includerisk minimization , PAC leaning, maximum likelihood optimization,
andMAP learning.

e Bayesian and ensemble methodsiake predictions according to model averages that are
convex combinations of modelse ¥, that is, which belong to the convex closure of the
model classF *. Such methods differ in the type of model averaging perfornigaiyesian
learning methods approximatés (y|x) = [t f(x) dP(f), an expectation taken over a class
of models¥, using an unknown probability distributid®( f) over the models. Starting from
a “prior”, our knowledge of this distribution is refined into a “posterior’@rhwe see some
data.Baggingensemble methods approxim&g( f (x,D)), wheref (x,D) is a function from
the model clas¥, trained withm examples anép(-) is the mathematical expectation over
all training sets of sizen. The key point in these methods is to generate a diverse set of
functions, each providing a different perspective over the probtdmard, the ensemble thus
forming a concensus view.

e Transduction methods make direct predictions ypfiivenx and X, bypassing the modeling
step. We do not address such methods in this paper.

The desired properties of the chosen predictor include: good gerati@izperformance, fast
training/prediction, and ease of interpretation of the predictions. Evergkhall of these aspects
are important in practice, we will essentially focus on the first aspect: obgaine best possible
generalization performance. Some of the other aspects of model seledfidre wliscussed in
Section 6.

The parametrization of differentiates the problem ahodel selectiodfrom the general ma-
chine learning problem. Instead of parameterizingvith one set of parameters, the model se-
lection framework distinguishes betweparametersandhyper-parametersWe adopt the simpli-
fied notationf (x; a,0) for a model of parametera and hyper-paramete It should be un-
derstood that different models may be parameterized differently. Hendex)a8) we really
meanf (x; «(0),0) or fo(x; ). For instance, for a linear modé(x,w) = w'x, o = w; for a ker-
nel methodf (x,a) = Y akK(x,Xk), a = [ak]. The hyper-parameters may include indicators of
presence or absence of features, choice of preprocessing metttomise of algorithm or model
sub-class (e.g., linear models, neural networks, kernel methods aégonithm or model sub-class
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parameters (e.g., number of layers and units per layer in a neural netwarkmum degree of a
polynomial, bandwidth of a kernel), choice of post-processing, etc. [¢¢erafer to the parame-
ters of the prioP(f) in Bayesian/MAP learning and the parameters of tmegularizer Q[f] in
risk minimization as hyper-parameters even if the resulting predictor is not an explicitiéunc
of those parameters, because they are used in the process of ledminigat follows, we relate
the problem of model selection to thatlofper-parameter selectiptaken in is broadest sense and
encompassing all the cases mentioned above.

We refer to the adjustment of the model parameteras thefirst level of inference When
data are split in several subsets for the purpose of training and evaluatidels, we calin, the
number oftraining examplesised to adjustv. If the hyper-parameteare adjusted from a subset
of data of sizem,,, we call the examples used to adjust them at seisond level of inferendbe
“validation sample”. Finally we callme the number of test examples used to evaluate the final
model. The corresponding empirical estimates ofetkigected risk R|, denotedR; [f], R4/ f], and
Ree[f], will be called respectivelyraining error, validation error, andtest error.

3. The Many Faces of Model Selection

In this section, we tracknodel selectiofrom various angles to finally reduce it to the unified view
of multilevel inference

3.1 Is Model Selection “Really” a Problem?

It is legitimate to first question whether the distinction between parameters gedpgrameters
is relevant. Splitting the learning problem into two levels of inference may beetient for con-
ducting experiments. For example, combinations of preprocessing, desglaction, and post-
processing are easily performed by fixigand traininga with off-the-shelf programs. But, the
distinction between parameters and hyper-parameters is more fundamemtahstance, in the
model class of kernel methodgx) = ¥ aK(X,xk; @), why couldn’t we treat botlx and @ as
regular parameters?

One common argument is that, for fixed value®othe problem of learninge can be formu-
lated as a convex optimization problem, with a single unique solution, for whialegbel math-
ematical programming packages are available, while the overall optimizatianaoid @ in non-
convex. Another compelling argument is that, splitting the learning problem eweral levels
might also benefit to the performance of the learning machine by “alleviating’r{ot eliminat-
ing) the problem obver-fitting. Consider for example the Gaussian redial basis function kernel
K(x,Xk; 8) = exp(—||x — x«||?/82). The functionf(x) = T ; axK(x,x; 8) is a universal approx-
imator if © is let to vary and if the sum runs over the training examples. If hotAnd O are
optimized simultaneously, solutions with a small valu®®dmight be picked, having zero training
error but possibly very poor generalization performance. The mddss & to which f belongs
has infinite capacityC(¥). In contrast, for a fixed value of the hyper-paramei®rthe model
f(x) = Y, akK (X, xk; 6°) is linear in its parameteray and has a finite capacity, bounded oy
In addition, the capacity of (x) = 3 ; apK(x,xg; 8) of paramete® for fixed valuesoy andx)
is very low (to see that, note that very few examples can be learned withroutbgrjust varying
the kernel width, given fixed vectos§ and fixed parameteisy). Hence,using multiple levels of
inference may reduce over-fitting, while still searching for solutions in aghddss of universal
approximators
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This last idea has been taken one step further in the mettgicdbiotural risk minimizatiorfVap-
nik, 1979), by introducing new hyper-parameters in learning problerighanitially did not have
any. Consider for instance the class of linear mod¢lg = S ;wix;. It is possible to introduce
hyper-parameters by imposing a structure in parameter space. A classiogble is the structure
[w||? < A, where||w|| denotes the Euclidean norm aAds a positive hyper-parameter. For increas-
ing values ofA the space of parameters is organized in nested subsets. Vapnik (18983 for
Support Vector Machines (SVM) and Bartlett (1997) for neural netadhat tighter performance
bounds are obtained by increasiAg The newly introduced parameter allows us to monitor the
bias/variance tradeoff Using a Lagrange multiplier, the problem may be replaced by that of min-
imizing a regularized risk functiond®eq = Ry +Y||w||2, y > O, where the training loss function
is the so-called “hinge loss” (seeg.,Hastie et al., 2000). The same regularifer|? is used in
ridge regression (Hoerl, 1962), “weight decay” neural netwovkerpos, 1988), regularized radial-
basis function networks (Poggio and Girosi, 1990), Gaussian pex¢skacKay, 1992), together
with the square loss function. Instead of the Euclidean norm or 2-normil-tieem regularizer
lw|l1 = Si|wi| is used in LASSO (Tibshirani, 1994) and 1-norm versions of SVMs ésgeZhu
et al., 2003), logistic regression (Friedman et al., 2009), and BoostiogséRet al., 2004). Weston
et al. (2003) have proposed a 0-norm regularizelio = 5; 1(w;), wherel(x) =1, if x# 0 and O
otherwise.

Interestingly, each method stems from a different theoretical justificatmmégsare Bayesian,
some are frequentist and some a a little bit of both like PAC-Bayesian bosedsfor example,
Seeger, 2003, for a review), showing a beautiful example of thearyectgence (Guyon, 2009).
Either way, for a fixed value of the hyper-parameieasr y the complexity of the learning problem
is lower than that of the original problem. We can optimizer y at a second level of inference, for
instance by cross-validation.

3.2 Bayesian Model Selection

In the Bayesian framework, there is no model selecpen se since learning does not involve
searching for an optimum function, but averaging over a posterior disisih For example, if the
model classF consists of model$(x; o, 8), the Bayesian assumption is that the parametessd
hyper-parameter@ of the model used to generate the data are drawn from a Pfw@r@). After
observing some data the predictions should be made according to:

Ea79(y|x,D)://f(x;a,0) P(ct,0|D) dex d6 .

Hence there is no selection of a single model, but a summation over models in thechasdé,
weighed byP(c,8|D). The problem is to integrate ov®{«,0|D).l A two-level decomposition
can be made by factorizir®(«, 8|D) asP(a,0|D) = P(a|6,D)P(0|D):

Ea,,,(y|x,D):/(/f(x;a,e)P(ae,D) da) P(6|D) df . (1)

Bayesian model selectialecomposes the prid?(a,0) into parameter prioP(«|@) and a
“hyper-prior” P(0). In MAP learning, the type-II likelihood (also called the “evidencd®}D|0) =

1. The calculation of the integral in closed form may be impossible to caryio this case, variational approxima-
tions are made or numerical simulations are performed, samplingf@m@|D), and replacing the integral by the
summation over a finite number of models.
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Y« P(D|a,0)P(a]0) is maximized with respect to the hyper-parametgsherefore assuming a
flat prior for @), while the “regular’” parametera are obtained by maximizing the postermt =
argmax,P(a|@,D) = argmax,P(D|c, 0)P(|6).2

3.3 Frequentist Model Selection

While Bayesians view probabilities as being realized in the idea of “prior™andterior” knowl-
edge of distributions, frequentists define probability in termexfuencies of occurrence of events
In this section, the “frequentist” approach is equated with risk minimization.

There are obvious ties between the problenmaidel selectiorand that ofperformance pre-
diction. Performance predictiotis the problem of estimating thexpected rislor generalization
error R[f]. Model selectioris the problem of adjusting the capacity or complexity of the models
to the available amount of training data to avoid eitheder-fitting or over-fitting. Solving the
performance predictioproblem would also solve theodel selectioproblem, but model selec-
tion is an easier problem. If we find an ordering index| such that for all pairs of functions
r[fy] <r[f2] = R[f1] < R[f,], then the index allows us to correctly carry onbdel selectionThe-
oretical performance bounds providinggaaranteed riskhave been proposed as ranking indices
(Vapnik, 1998). Arguably, the tightness of the bound is of secondaryitapce in obtaining a
good ranking index. Bounds of the formif] = R, [f] +&(C/my ), whereC characterizes the ca-
pacity or complexity of the model class, penalizes complex models, but thétypgaaishes as
m; — . Some learning algorithms, for example, SVMs (Boser et al., 1992) ottinga$-reund
and Schapire, 1996), optimizegaaranteed riskather than thempirical risk R,[f], and therefore
provide some guarantee of gogdneralization Algorithms derived in this way have an embedded
model selection mechanism. Other closely related penalty-based method® iBelyesiarMAP
learning andregularization.

Many models (and particularlgompound modelscluding feature selection, preprocessing,
learning machine, and post-processing) are not associated with kresfemmance bounds. Com-
mon practice among frequentists is to split available training datangtdraining examples to
adjust parameters amd,; validation examples to adjust hyper-parameters. In an effort to reduce
variance, the validation errd®,,[f] may be averaged over many data splits, leading to a cross-
validation (CV) estimatoRcy[f]. The most widely used CV method ksfold cross-validation
It consists in partitioning training data int ~ (my + myy) /My disjoint subsets of roughly equal
sizes (up to rounding errors), each corresponding to one validatigtheecomplement being used
as training set). In stratified cross-validation, the class proportions ddiliftata sets are respected
in all subsets. The variance of the results may be reduced by perfofntimges K-fold cross-
validation and averaging the results of Qeuns. Another popular method consists in holding out
a single example at a time for validation purposes. The resulting crossti@iidairor is referred
to as “leave-one-out” errdR oo[f]. Some preliminary study design is necessary to determine the
sufficient amount of test data to obtain a good estimate of the generalizatioiilexngford, 2005),
the sufficient amount of training data to attain desired generalization periogagand an adequate
split of the training data between training and validation set. See Guyon)(#2(#® discussion of
these issues.

2. In some Bayesian formulations of multi-layer Perceptrons, the esddramework maximizes ovef but
marginalises over the weights, rather than maximizing, so in this case the ddARpply to the parameters or
the hyper-parameters or both.
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4. Multi-level Inference: A Unifying View of Model Selection

What is common among the various views of model selection is the idea of multiple tdvuefer-
ence, each level corresponding to one set of parameters or hgrzengters. Consider a two-level
case for a model clas§(x; «,0) parameterized by one set of parameierand one set of hyper-
parameter®. From the frequentist (risk minimization) point of view, instead of jointly optimizing
a risk functional with respect to all parametetsand 8, one creates a hierarchy of optimization
problems?

f** =argminR[f*,D] , such thatf* =argmin,R;[f,D] 2)

whereR; andR; are first and second level risk functionals.

From the Bayesian point of view, the goal is to estimate the integral of Equhtidimere are
striking similarities between the two approaches. To make the similarity more obwigusan
rewrite Equation 1 to make it look more like Equation 2, using the notdtiérior Eq o (y|X,D):

o — / f*e R de, suchthatf* = /f e N da (3)

whereR; = —InP(a]#,D) andR, = —InP(#|D). Note that in Bayesian multi-level inferendé
and f** do not belong tgF but to 7*, the closure off under convex combinations.

More generally, we definemulti-level inference probleras a learning problem organized into
a hierarchy of learning problems. Formally, consider a machine learnitigttadich includes a
choice of learning machineg| B, R], whereB is a model space of functiorf§x; #), of parameters
6 andR is an evaluation function (e.g., a risk functional or a negative log posteride think
of 4[B,R] not as a procedure, but as an “object”, in the sense of object orignbeglamming,
equipped with a method “train”, which processes data according to a traifgogthm?

f** = train(4[B, Ry], D); 4)

This framework embodies the second level of inference of both Equaiand 3. The solution
f** belongs toB*, the convex closure o8. To implement the first level of inference, we will
consider thatB is itself a learning machine and not just a model space. Its model gpaneudes
functionsf (x; 6, ) of variable parametews (6 is fixed), which are adjusted by the “train” method
of B:
f* =train(B[¥,Ry],D); (5)

The solutionf* belongs tof *, the convex closure af . The method “train” 0f4 should call
the method “train” of B8 as a subroutine, because of the nested nature of the learning problems of
Equations 2 and 3. Notice that it is possible that different subsets of tadbdare used at the
different levels of inference.

We easily see two obvious extensions:

() Multi-level inference:Equation 4 and 5 are formally equivalent, so this formalism can be
extended to more than two levels of inference.

3. It would be more correct if the argmin was assigned to parametéfsimetions, since the search domain is over
parameters, and writ®** = argmirg Rx[f*,D] , such thata* = argmin, Ry[f,D], f* = f(x,a*), but we adopt a
shorthand to emphasize the similarities between the frequentist and Bagippi@aches.

4. We adopt a Matlab-style notation: the first argument is the object ofhuthie function is a method; the function
“train” is overloaded, there is one for each algorithm. The notations apgrad and adapted from the conventions
of the Spider package and the CLOP packages (Saffari and Guy06).2
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(i) Ensemble method3:he method “train” returns either a single model or a linear combination
of models, so the formalism can include all ensemble methods.

We propose in the next section a new classificatiomofti-level inferencenethods, orthogonal
to the classical Bayesian versus frequentist divide, referring to tigenwahich data are processed
rather than the means by which they are processed.

5. Advances in Multi-level Inference

We dedicate this section to reviewing the methods proposed in the collectiopagaat we have
edited. We categorize multi-level inference modules, each implementing ohefl@vierence, into
filter, wrapper, andembedded methodbsorrowing from the conventional classification of feature
selection methods (Kohavi and John, 1997; Blum and Langley, 199/rtet al., 2006a)Filters
are methods for narrowing down the model space, without training theimganmachine. Such
methods include preprocessing, feature construction, kernel desidtecture design, choice of
prior or regularizers, choice of a noise model, and filter methods forrieaglection. They consti-
tute the highest level of inferentéNrapper methodsonsider the learning machine as a black-box
capable of learning from examples and making predictions once traineg.oplerate with a search
algorithm in hyper-parameter space (for example grid search or stackaarch) and an evalua-
tion function assessing the trained learning machine performances éimpéx the cross-validation
error or the Bayesian evidence). They are thieldle-wareof multi-level inference. Embedded
methods are similar to wrappers, but they exploit the knowledge of the Igamachine algorithm
to make the search more efficient and eventually jointly optimize parameterypedgparameters,
using multi-level optimization algorithms. They are usually used at the lowedtd&irderence.

5.1 Filters

Filter methods include a broad class of techniques aiming to reduce the madelsprior to
training the learning machine. Such techniques may use “prior knowledgédmain knowledge”,
data from prior studies or from R&R (repeatability and reproducibility ) stsidand even the
training data themselves. But they do not produce the final model used topredictions. Several
examples of filter methods are found in the collection of papers we have edited

Preprocessing and feature construction.An important part of machine learning is to find a good
data representation, but choosing an appropriate data representat@y gomain depen-
dent. In benchmark experiments, it has often been found that genesafinge number of
low-level features yields better result than hand-crafting a few femtimarporating a lot
of expert knowledge (Guyon et al., 2007). The feature set can thgiruned by feature
selection. In the challenges we have organized (Clopinet, 2004-2083)atta were gen-
erally already preprocessed to facilitate the work of the participants. Vawadditional
normalizations, space dimensionality reduction and discretization were adtéormped by
the participants. Of all space dimensionality reduction mettiriscipal Component Anal-
ysis (PCA) remains the most widely used. Several top-ranking participantsatitenbes
we organized used PCA, including Neal and Zhang (2006), winnetiseoNIPS 2003 fea-
ture selection challenge, and Lutz (2006), winner of the WCCI 200®paeince prediction

5. Preprocessing is often thought of as a “low-level” operation. Hewanith respect to model selection, the selection
of preprocessing happens generally in the “outer loop” of selectiorehigis at the highest level.
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challenge.Clusteringis also a popular preprocessing method of dimensionality reduction,
championed by Saeed (2009) who used a Bernoulli mixture model as artangou artificial
neural network. In his paper on data grid models Bo@#009) proposes a new method of
data discretization It can be used directly as part of a learning machine based on data grids
(stepwise constant predictors) or as a preprocessing to other leanattignes, such as the
Naive Bayes classifier. Of particular interest in this paper is the udatafdependent priors

Designing kernels and model architectures.Special purpose neural network architectures imple-
menting the idea of “weight sharing” such as Time Delay Neural Networkst{gl, 1988) or
two-dimensional convolutional networks (LeCun et al., 1989) havequtdw be very effec-
tive in speech and image processing. More recently a wide variety of$pecpose kernels
have been proposed to incorporate domain knowledge in kernel leaaigiogthms. Exam-
ples include kernels invariant under various transforms (Simard et &3; Fzdnoukhov
and Bengio, 2006), string matching kernels (Watkins, 2000), and atlelesice and tree ker-
nels (Vishwanathan and Smola, 2003). Along these lines, in our collectipapars, Chlé
Agathe Azencott and Pierre Baldi have proposed two-dimensionatledior high-thoughput
screening (Azencott and Baldi, 2009). Design effort has also bmfmugeneral purpose ker-
nels. For instance, in the paper of Adankon and Cheriet (2009) , tiv ®dularization
hyper-parametel (box-constraint) is incorporated in the kernel function. This facilitates the
task of multi-level inference algorithms.

Defining regularizers or priors. Designing priorsP(f) or regularizers Q[f] or structuring pa-
rameter space into parameters and several levels of hyper-paranateisa be thought of
as a filter method. Most priors commonly used do not embed domain knowlmhysjust
enforce Ockham'’s razor by favoring simple (smooth) functions or eliminatietgvant fea-
tures. Priors are also often chosen out of convenience to facilitate thexieform calculation
of Bayesian integrals (for instance the use of so-called “conjugatesprgmee.g.,Neal and
Zhang, 2006). The 2-norm regulariz&f] = \|f|]§{ for kernel ridge regression, Support
Vector Machines (SVM) and Least-Square Support Vector Machib8SYM) have been
applied with success by many top-ranking participants of the challengesyamined. Gavin
Cawley was co-winner of the WCCI 2006 performance prediction chadlesing LSSVMs
(Cawley, 2006). Another very successful regularizer isAbhtomatic Relevance Determi-
nation (ARD) prior. This regularizer was used in the winning entry of RadfoehNn the
NIPS 2003 feature selection challenge (Neal and Zhang, 2006). Gavitey also made top
ranking reference entries in the IJCNN 2007 ALvsPK challenge (CaanelyTalbot, 2007b)
using a similar ARD prior. For linear models, the 1-norm regularige| is also popular
(seee.qg.,Pranckeviciene and Somorjai, 2009), but this has not been quite assstiddn
challenges as the 2-norm regularizer or the ARD prior.

Noise modeling. While the prior (or the regularizer) embeds our prior or domain knowled¢feeo
model class, the likelihood (or the loss function) embeds our prior knowleddghe noise
model on the predicted variable In regression, the square loss corresponds to Gaussian
noise model, but other choices are possible. For instance, recentinp Gawley and Nicola
Talbot implemented Poisson regression for kernel machines (Cawley 20@r.). For clas-
sification, the many loss functions proposed do not necessarily cormégp a noise model,
they are often just bounding the 0/1 loss and are used for computationargence. In the
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Bayesian framework, an sigmoidal function is often used (like the logisticatripfunctions)

to map the output of a discriminant functidiixy) to probabilitiespx. Assuming target values
Yk € {0,1}, the likelihoodMypf (1 — p)1 Y corresponds to the cross-entropy cost function
SkYkInpe+ (1—yk) In(1—px). Aclever piece-wise S-shaped function, flat on the asymptotes,
was used in Chu et al. (2006) to implement sparsity for a Bayesian SVMithlgorNoise
modeling is not limited to noise models for the targgett also concerns modeling noise on
the input variableg. Many authors have incorporated noise modelg as part of the kernel
design, for example, by enforcing invariance (Simard et al., 1993;iagthov and Bengio,
2006). A simple but effective means of using a noise model is to generditéoadl| training
data by distorting given training examples. Additional “unsupervised” dadéten useful to

fit a noise model on the input variables Repeatability and reproducibilityR& R) studies
may also provide data to fit a noise model.

Feature selection filters. Feature selection, as a filter method, allows us to reduce the dimension-

ality of the feature space, to ease the computations performed by learnitgnesc This

is often a necessary step for computationally expensive algorithms suneuesd networks.
Radford Neal for instance, used filters based on univariate statistgtaltteprune the fea-
ture space before applying his Bayesian neural network algorithm @elazhang, 2006).
Univariate filters were also widely used in the KDD cup 2009, which involiedsification
tasks on a very large database, to cut down computations (Guyon et @3h)20Feature
selection filters are not limited to univariate filters. Markov blanket methamsintance,
provide powerful feature selection filters (Aliferis et al., 2003). A rewvd filters for feature
selection can be found in Guyon et al. (2006a, Chapter 3).

5.2 Wrappers

Wrapper methods consider learning machineblask boxescapable of internally adjusting their
parametersx given some dat® and some hyper-parameter val#esNo knowledge either of the
architecture, of the learning machines, or of their learning algorithm sHmlequired to use a
wrapper. Wrappers are applicable to selecting a classifier from amorigsteaset of learning
machines is then a discrete index), or an infinite set (for continuous valuéh.ofVrappers can
also be used to build ensembles of learning machines, including Bayesieimlgdas. Wrappers
use asearch algorithnor asampling algorithnto explore hyper-parameter space aneéaaluation
function(arisk functionaRp [ f (6)], a posterior probabilit?( f (8)|D), or any model selection index
r(f(0)]) to assess the performance of the sample of trained learning machinesejtaad select
one single best machine or create an ensemble of machine voting to makeignsdic

Search and sampling algorithms. Because the learning machines in the wrapper setting are “black
boxes”, we cannot sample directly from the posterior distribuBiof(#)|D) (or according to
exp—Rp[f(8)] or exp—r[f(8)]). We can only compute the evaluation function for given
values of@ for which we run the learning algorithm df(@), which internally adjusts its
parametersx. A search strategydefines which hyper-parameter values will be considered
and in which order (in case a halting criterion ends the search prematufgelyin Caw-
ley, in his challenge winning entries, used the Nelder-Mead simplex algoriftawléy and
Talbot, 2007a) Monte-Carlo Markov Chain MCMC methods are used in Bayesian mod-
eling to sample the posterior probability and have given good results in chefigiNeal
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and Zhang, 2006). The resulting ensemble is a simple average of the sdnpdtidns
F(x) = (1/s) 371 f(x|6k). Wrappers forfeature selectiomse all sort of techniques, but se-
quentialforward selectioror backward eliminatioormethods are most popular (Guyon et al.,
2006a, Chapter 4). Other stochastic search methods include biologicalyemhsnethods
such agjenetic algorithmandparticle swarm optimizationGood results have been obtained
with this last method in challenges (H. J. Escalante, 2009), showing thasexeearch does
not necessarily yield over-fit solutions, if some regularization mechanisseis. The authors
of that paper rely for that purpose on weight decay and early stoppiegjuentist ensemble
methods, including Random Forests (Breiman, 2001) and Logitboosti(Raie et al., 2000)
also gave good results in challenges (Lutz, 2006; Tuv et al., 2009; Bej2009).

Evaluation functions. For Bayesian approaches, the standard evaluation function is thefeeigle
that is the marginal likelihood (also called type-II likelihood) (Neal and £h&@&006), or, in
other words, the likelihood at the second level of inference. For &efist approaches, the
most frequently used evaluation function is the cross-validation estimatecifisally, K-
fold cross-validation is most often used (H. J. Escalante, 2009; Dahi2@9; Lutz, 2006;
Reunanen, 2007). The valuks= 10 orK =5 are typically used by practitioners regardless
of the difficulty of the problem (error rate, number of examples, numbgaonébles). Com-
putational considerations motivate this choice, but the authors repddtaednsensitivity
of the result in that range of valuesl¢f The leave-one-out (LOO) estimator is also used, but
due to its high variance, it should rather be avoided, except for compaatieasons (see in
Section 5.3 cases in which the LOO error is inexpensive to compute). Estésetors may
be poor predictors of the actual learning machine performances, uartheecent model se-
lection indices, provided that the same data splits are used to compute the exdluatioon
for all models. Foibagging methods (like Random Forests, Breiman, 2001), the bootstrap
estimator is a natural choice: the “out-of-bag” samples, which are thesples not used
for training, are used to predict performance. Using empirical estimatiding decond level
on inference poses the problem of possibly over-fitting them. Some awtieogate using
evaluation functions based on prediction risk bounds: Koo and Kil (R@@8 Claeskens
et al. (2008) derive in this way information criteria for regression modelspgctively called
“modulus of continuity information criterion” or MCIC and “kernel regressinformation
criterion” or KRIC) and Claeskens et al. (2008) and Pranckeviciemk Somorjai (2009)
propose information criteria for classification problems (respectively acéiepport vector
machine information criterion” SVMIC and “transvariation intensity”). Théeefiveness of
these new criteria is compared empirically in the papers to the classical “Aldideenation
criterion” or AIC (Akaike, 1973) and the “Bayesian information criterian”BIC (Schwarz,
1978).

5.3 Embedded Methods

Embedded methods are similar to wrappers. They need an evaluation fusnudi@rsearch strategy
to explore hyper-parameter space. But, unlike wrapper methods, thé&itespecific features of
the learning machine architecture and/or learning algorithm to perform mutti-ileference. It is
easy to appreciate that knowledge of the nature and structure of a amaghine can allow us to
search hyper-parameter space in a more efficient way. For instaedentttionf (x; ,8) may be
differentiable with respect to hyper-paramet@rand it may be possible to uggadient descenb
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optimize an evaluation functiorif]. Embedded methods have been attracting substantial attention
within the machine learning community in the past few years because of the métiedmiagance
of some of the new proposed methods.

Bayesian embedded methodsln the Bayesian framework, the embedded search, sampling or
summation over parameters and hyper-parameters is handled in an eledargnsistent
way by defining priors both for parameters and hyper-parameters;anguting the poste-
rior, perhaps in two steps, as indicated in Equation 3. Of course, it is nasily said than
done and the art is to find methods to carry out this integration, particuladyths ana-
lytically intractable. Variational methods are often used to tackle that problariatwnal
methods convert a complex problem into a simpler problem, but the simplificatiodirdes
additional “variational” parameters, which must then be optimized, hencelintiog another
level of inference. Typically, the posterior is bounded from above Egnaly of functions
parameterized by given variational parameters. Optimizing the variatioreingters yields
the best approximation of the posterior (®eg.,Seeger, 2008). Bayesian pragmatists opti-
mize the evidence (also called type-ll likelihood or marginal likelihood) at due®sd level
of inference, but non-purists sometimes have a last recourse tovaidation. The contri-
butions of Boulé (2007, 2009) stand out in that respect because they propose setatgion
methods for classification and regression, which have no last redoursass-validation, yet
performed well in recent benchmarks (Guyon et al., 2008a, 200%ich ®ethods have been
recently extended to the less studied problem of rank regression (ldugoartie, 2007). The
methods used are Bayesian in spirit, but make use of original data-dapenrs.

Regularized functionals. In the frequentist framework, the choice of a prior is replaced by the
choice of a regularized functional. Those are two-part evaluationtirsincluding the
empirical risk (or the negative log-likelihood) and a regularizer (or arprieor kernel meth-
ods, a 2-norm regularizer is often used, yielding the classical pendlinetional Rieg[f] =
Remp f] + VI f||5. Pranckeviciene and Somorjai (2009) explore the possibilities offeyexd b
1-norm regularizer. Such approaches provide an embedded metfezdwk selection, since
the constraints thus imposed on the weight vector drive some weights to ezxawily We
emphasized in the introduction that, in some cases, decomposing the infprehlmam into
multiple levels allows us to conveniently regain the convexity of the optimizationlgmob
involved in learning. Ye et al. (2008) propose a multiple kernel learningl{vmethod, in
which the optimal kernel matrix is obtained as a linear combination of pre-sgebéiérnel
matrices, which can be brought back to a convex program. Few ap@®ace fully embed-
ded and a wrapper is often used at the last level of inference. Fongestia kernel methods,
the kernel parameters may be optimized by gradient descent on the agitamctional,
but then the regularization parameter is selected by cross-validation. gpreaah is to use
a bound on the generalization error at the second level of inferemmcéngtance, Guermeur
(2007) proposes such a bound for the multi-class SVM, which can ki tosehoose the
values of the “soft margin parameter” C and the kernel parameterss-@atigation may be
preferred by practitioners because it has performed consistently wadihichmarks (Guyon
et al., 2006b). This motivated Kunapuli et al. (2009) to integrate the lsdaroptimal pa-
rameters and hyper-parameters into a multi-level optimization program, usegukarized
functional at the lower level, and cross-validation at the upper level.thfmavay of inte-
grating a second level of inference performed by cross-validationtl@maptimization of
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a regularized functional at the first level of inference is to use a clom®ad expression of
the leave-one-out error (or a bound) and optimize it by gradient desceanother classi-
cal optimization algorithm. Suc¥irtual leave-one-ouéstimators, requiring training a single
classifier on all the data (seeg.,Cawley and Talbot, 2007a; Debruyne et al., 2-8, in the
collection of papers we have assembled).

6. Advanced Topics and Open Problems

We have left aside many important aspects of model selection, which, geatstting, would
deserve a longer treatment. We briefly discuss them in this section.

6.1 Ensemble Methods

In Section 4, we have made an argument in favor of unifynoglel selectioandensemble methods
stemming either from a Bayesian or frequentist perspective, in the commaomm@drork ofmulti-
level optimization In Sections 5.1, 5.2, and 5.3, we have given examples of model selention a
ensemble methods followinfilter, wrapper or embeddedstrategies. While this categorization
has the advantage of erasing the dogmatic origins of algorithms, it blurs sbothe wnportant
differences between model selection and ensemble methods. Ensemblesweathde thought of
as a way of circumventing model selection by voting among models rather tioasiog a single
model. Recent challenges results have proved their effectivenegsr{@ual., 2009b). Arguably,
model selection algorithms will remain important in applications where model simplicttydata
understanding prevail, but ever increasing computer power has lirengemble methods to the
forefront of multi-level inference techniques. For that reason, waldvbke to single out those
papers of our collection that have proposed or applied ensemble methods:

Lutz (2006) used boosted shallow decision trees for his winning entriesdrctmsecutive
challenges. Boosted decision trees have often ended up among the kiopg narethods in other
challenges (Guyon et al., 2006a, 2009b). The particular implementationtofof the Logitboost
algorithm (Friedman et al., 2000) use a “shrinkage” regularization hRgpexmeter, which seems to
be key to attain good performance, and is adjusted by cross-validatiogllagswhe total number of
base learnersDahinden (2009) successfully applied the Random Forest (RF)ithigo{Breiman,
2001) in the performance prediction challenge (Guyon et al., 2006b) d&henstrated that with
minor adaptations (adjustment of the bias value for improved handling ofamtzal classes), the
RF algorithm can be applied without requiring user intervention. RF corgitaube a popular and
successful method in challenges (Guyon et al., 2009b). The top ramladgls use very large en-
sembles of hundreds of trees. One of the unique features of RF algoighhe they subsample
both the training examples and the features to build base learners. Usdmgnaubsets of fea-
tures seems to be a winning strategy, which was applied by others to enseifrtbées using both
boosting and bagging (Tuv et al., 2009) and to other base learnerdifNik009). Boulk (2007)
also adopts the idea of creating ensembles using base learners codstritictdifferent subsets
of features. Their base learner is théveaBayes classifier and, instead of using random subsets,
they select subsets with a forward-backward method, using a maximumtérieas(MAP) eval-
uation function (hence not requiring cross-validation). The basedemare then combined with
an weighting scheme based on an information theoretic criterion, insteadightivg the mod-
els with the posterior probability as in Bayesian model averaging. This ligdiedls down to
using the logarithm of the posterior probabilities instead of the posteriorpiiities themselves
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for weighting the models. The weights have an interpretation in terms of modedressibility.
The authors show that this strategy outperforms Bayesian model avg@giseveral benchmark
data sets. This can be understood by the observation that when thequatigtribution is sharply
peaked around the posterior mode, averaging is almost the same as sétecii®yP model. Ro-
bustness is introduced by performing a more balanced weighting of thddzaeers. In contrast
with the methods we just mentioned, which choose identical base learnes ¢fradve Bayes),
other successful challenge participants have built heterogeneoesilglies of learning machines
(including, for example, linear models, kernel methods, treeiserdayes, and neural networks),
using cross-validation to evaluate their candidates for inclusion in the etséWilzhard, 2007;
IBM team, 2009). While Wichard (2007) evaluates classifiers indepélyddM team (2009) uses
a forward selection method, adding a new candidate in the ensemble babedew performance
of the ensemble.

6.2 PAC Bayes Approaches

Unifying Bayesian and frequentist model selection procedures undaurttbrella ofmulti-level

inferencemay shed new light on correspondences between methods and haetiGaprapact on

the design of toolboxes incorporating model selection algorithms. But theggeamore synergies

to be exploited between the Bayesian and the frequentist framework. ketttion, we would like

to capture the spirit of the PAC Bayes approach and outline possible fitfetions of research.
The PAC learning framework (Probably Approximately Correct), intreduloy Valiant (1984)

and later recognized to closely resemble the approach of the Russian gopalarized in the US

by Vapnik (1979), has become the beacon of frequentist learningefieapproaches. It quantifies

the generalization performance (t8errectaspect) of a learning machine via performance bounds

(the Approximateaspect) holding in probability (therobableaspect):

Prob) (R[f] — Remid ) <&(8)| > (1-3) ,

In this equation, the confidence intengd) (Approximateaspect) bounds, with probability
(1—9) (Probableaspect),the difference between #agected rislor generalization errdr|f] and
theempirical risk Remp f] (Correctaspect). Recently, many bounds have been proposed to quantify
the generalization performance of algorithms (eeg,Langford, 2005, for a review). The idea of
deriving new algorithms, which optimize a boun(b) (guaranteed riskoptimization) has been
popularized by the success of SVMs (Boser et al., 1992) and boobtiegr(d and Schapire, 1996).

The PAC framework is rooted in the frequentist philosophy of definindgpgindity in terms of
frequencies of occurrence of eveatsd bounding differences between mathematical expectations
and frequencies of events, which vanish with increasingly large sampke(&av of large numbers).
Yet, since the pioneering work of Haussler et al. (1994), many authers proposed so-called
PAC-Bayes bounds. Such bounds assess the performance of eBaljegian algorithms (see
e.g.,Seeger, 2003), or are used to derive new Bayesian algorithms optimizjngranteed risk
functional (see Germain et al. 2009 and references therein).

This is an important paradigm shift, which bridges the gap between theeinégtstructural
risk minimizationapproach to model selection (Vapnik, 1998) and Bagesian priorapproach.

6. at the first level of inference, this would be the training eRgeff]; at the second level of inference this may be the
validation erroiRya| f]
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It erases the need for assuming thia model used to fit the data comes from a concept space of
functions that generated the datilmstead, priors may be used to provide a “structure” on a chosen
model space (calletlypothesis spact distinguish it from theconcept spade which does not
necessarily coincide with theoncept spagef which we often know nothing. Reciprocally, we can
interpret structures imposed on a hypothesis space as our prior belieéttein models are going
to perform better than others (see, for instance, the examples at thé 8action 3.1).

This opens the door to also regularizing the second level of inferenceihy performance
bounds on the cross-validation error, as was done for instance in ¥ aweTalbot (2007a) and
Guyon (2009).

6.3 Open Problems

e Domain knowledge: From the earliest embodiments of Okcham’s razor using the number
of free parameters to modern techniques of regularization and bi-letielipation, model
selection has come a long way. The problem of finding the right structoraing, the rights
prior or the right regularizer. Hence know-how and domain knowledgeil required. But
in a recent challenge we organized called “agnostic leam@grior knowledge” (Guyon
et al., 2008b) it appeared that the relatively small incremental improvemainescwith prior
knowledge came at the expense of important human effort. In many doroaliegting more
data is less costly than hiring a domain expert. Hence there is pressurelsdwgaroving
machine learning toolboxes and, in particular equipping them with model sel¢ctits. For
the competitions we organized (Clopinet, 2004-2009), we made a toolbibeddgavith state-
of-the-art models (Saffari and Guyon, 2006), which we progvesaugmented with the best
performing methods. The Particle Swarm Optimization (PSO) model selection mehod
find the best models in the toolbox and reproduce the results of the challgthgk Escalante,
2009). Much remains to be done to incorporate filter and wrapper mdeetisa algorithms
in machine learning toolboxes.

e Unsupervised learning: Multi-level optimization and model selection are also central prob-
lems forunsupervised learning When no target variable is available as “teaching signal”
one can still define regularized risk functionals and multi-level optimizatiohlprms (Smola
et al., 2001). Hyper-parameters (e.g., “number of clusters”) can jostad by optimizing a
second level objective such as model stability (Ben-Hur et al., 2002gvitk an erzatz of
cross-validation. The primary difficulty with model selection for unsupedigarning is to
validate the selected model. To this day, there is no consensus on how toriakaenethods,
hence it is very difficult to quantify progress in this field. This is why weehaw far shied
away from evaluating unsupervised learning algorithms, but this remaiosraagenda.

e Semi-supervised learning:Very little has been done for model selectiorsemi-supervised
learning problems, in which only some training instances come with target values. Semi-
supervised tasks can be challenging for traditional model selection methartsas cross-
validation, because the number of labeled data is often very small. SchuamdiSouthey
(2001) used the unlabeled data to test the consistency of a model, by gefinietric over
the hypothesis space. Similarly, Madani et al. (2005) introduced thalmation method,
which uses the disagreement of various models on the predictions overléieied data as
a model selection tool. In some cases there is no performance gain by usinglébeled
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data for training (Singh et al., 2008). Deciding whether all or part of theheled data should
be used for trainingdata selectionmay also be considered a model selection problem.

e Noni.i.d. data: The problem of non.i.d. data raises a number of other questions because
if there are significant differences between the distribution of the trairmadgtlze test data,
the cross-validation estimator may be worthless. For instance, in causalatigproblems,
training data come from a “natural” distribution while test data come from ardiite'manip-
ulated” distribution (resulting from some manipulations of the system by annattagent,
like clamping a given variable to given values). Several causal graplgde consistent with
the “natural distribution” (not just with the training data, with the true unknalgtribution),
but yield very different predictions of manipulated data. Rather selectsigghe model, it
make more sense to select a model class. We have started a program e{atetage and
benchmarks to evaluate solutions to such problems (Guyon et al., 200®m®)20

e Computational considerations: The selection of the model best suited to a given application
is a multi-dimensional problem in which prediction performance is only one oflitnen-
sions. Speed of model building and processing efficiency of deployeeisare also impor-
tant considerations. Model selection algorithms (or ensemble methods) wiéchrequire
many models to be trained (e.g., wrapper methods with extensive searchistated using
cross-validation to validate models) may be unable to build solutions in a timely makiner
the expense of some acceptable loss in prediction performance, metimagigraedy search
strategies(like forward selection methods) arsihgle-pass evaluation functiorfeequiring
the training of only a single model to evaluate a given hyper-parametere)haiay consid-
erably cut the training time. Greedy search methods include forward selecttbbackward
elimination methods. Single-pass evaluation functions include penalized traimorgunc-
tionals (regularized functionals, MAP estimates) and virtual-leave-ohesiimators. The
latter allows users to compute the leave-one-out-error at almost no adda@@nputational
expense than training a single predictor on all the training datae(ge&uyon et al., 2006a,
Chapter 2, for a review). Other tricks-of-the-trade include followfagularization paths
to sample the hyper-parameter space more effectively (Rosset an@@0ty, Hastie et al.,
2004). For some models, the evaluation function is piecewise linear betwifeandiscon-
tinuous changes occurring for a few finite hyper-parameter values.whole path can be
reconstructed from only the values of the evaluation function at thosa gigints. Finally,
Reunanen (2007) proposed clever ways of organizing nestedvalidation evaluations in
multiple level of inference model selection using cross-indexing. The aalso explored
the idea of spending more time to refine the evaluation of the most promising mbdslser
work needs to be put into model selection methods, which simultaneouslysadudrdtiple
objectives, including optimizing prediction performance and computational cos

7. Conclusion

In the past twenty years, much effort has been expended towardtsfithe best regularized func-
tionals. The many embodiments of Ockham’s razor in machine learning haverged towards
similar regularizers. Yet, the problem of model selection remains becauseeadsto optimize the
regularization parameter(s) and often we need to select among vareprsgessings, learning ma-
chines, and post-processings. In the proceedings of three of thenges we organized around the
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problem of model selection, we have collected a large number of papeid) testify to the vivid
activity of the field. Several researchers do not hesitate to proposgd@pproaches transcending
the usual “frequentist” or Bayesian dogma. We have seen the idea of thgirBayesian machin-
ery to design regularizers with “data-dependent priors” emerge (802007, 2009), much like a
few years ago data-dependent performance bounds (Bartlett, ¥88ik, 1998) and PAC-Bayes
bounds (Haussler et al., 1994; Seeger, 2003) revolutionized trogpuéreist” camp, up to then very
fond of uniform convergence bounds and the VC-dimension (VaprdkGirervonenkis, 1971). We
have also seen the introduction of regularization of cross-validation estenaimg Bayesian pri-
ors (Cawley and Talbot, 2007a). Ensemble methods may be thought of &g @f wircumventing
model selection. Rather, we think of model selection and ensemble methods aptians to
perform multi-level inference, which can be formalized in a unified way.

Within this general framework, we have categorized approachefilietowrapperandembed-
dedmethods. These methods complement each other and we hope that in a netanbfdture,
they will be integrated into a consistent methodology: Filters first can prumielspace; Wrappers
can perform an outer level model selection to select pre/post progesaial feature subsets; Em-
bedded methods can perform an inner level hyper-parameter seledégraied within a bi-level
optimization program. We conclude that we are moving towards a unified frarkdar model
selection and there is a beneficial synergy between methods, both froporatibal and from a
practical perspective.
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Appendix A. Glossary

Automatic Relevance Determination (ARD) prior. The ARD prior was invented for neural net-
works (MacKay, 1992): all network input variables and all neurotpuots (internal features)
are weighed by a scaling factry, before being independently weighted by the network con-
nections. A hyper-prior must be chosen to favor small values okthehich makes the
influence of irrelevant variables or features naturally fade away.kéorel methods, ARD
falls under the same framework as ﬂhi—:ﬂg{ regularizer, for a special class of kernels using
variable (feature) scaling factors. For instance, the ARD prior is implerddmtéefining the
Gaussian kernel (for positive hyper-parametg)s

K(Xn,Xk) = exp{— i Ki(Xn, —Xk,j)z}
=1

instead of the regular Gaussian kerkéky, xx) = exp{—KHxh — XkHZ}.

Base learner. In an ensemble method, the individual learning machines that are partefisieen-
ble.
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Bagging. Bagging stands for bootstrap aggregating. Bagging is a parallel ensemstited (all
base learnersare built independently from training data subsets). Several datatsuifse
sizem are drawn independently with replacement from the training set ekamples. On
average each subset thus built contains approximately 2/3 of the trairangpées. The en-
semble predictions are made by averaging the predictions of the basersedrhe ensemble
approximate€p(f(x,D)), wheref(x,D) is a function from the model class F, trained with
m examples andtp(.) is the mathematical expectation over all training sets of gBiz& he
rationale comes from thbias/variance decompositionof the generalization error. The
“out-of-bag” samples (samples not used for learning for each datesdbawn for training)
may be used to create a bootstrap prediction of performance.

Bayesian learning. Under the Bayesian framework, it is assumed that the data were generated
from a double random process: (1) a model is first drawn accordiagtmr distribution
in a concept space(2) data are produced using the model. In the particular case of super-
vised learning, as fomaximum likelihood learning, a three-part data generative model is
assumedP(x), f € 7, and a zero-mean noise model. But, it is also assumed that the function
f was drawn according to a prior distributi®f ). This allows us to compute the probability
of an outputy given an inpui, P(y|x) = [t + P(y|x, f)dP(f), or its mathematical expecta-
tion E(y|x) = [;c4 f(X)dP(f), averaging out the noise. After training d&aare observed,
the priorP(f) is replaced by theosterior P(f|D). The mathematical expectationygiven
x is estimated asE(y|x,D) = [, f(x)dP(f|D). Hence, learning consists of calculating the
posterior distributiorP(f|D) and integrating over it. The predictions are made according to
E(y|x,D), a function not necessarily belonging fa In the case of classificatiok,(y|x, D)
does not take values Y (although thresholding the output just takes care of the problem).
If we want a model inf, we can use the Gibbs algorithm, which picks one samplg ac-
cording to the posterior distributid?( f|D), or use theMAP learning approach. In Bayesian
learning, analytically integrating over the posterior distribution is often imptessibd the
integral may be approximated by finite sum of models, weighted by positifédgests (see
variational methods) or by sampling models from the posterior distribution (¥¢sighted
majority algorithm andMonte-Carlo Markov Chain or MCMC). The resulting estimators
of E(y|x, D) are convex combinations of functionsfnand, in that sense, Bayesian learning
is similar toensemble methods

Bias/variance decomposition.In the case of a least-square loss, the bias/variance decomposition
is given byEp|(f (x; D) — Ely|x])?] = (Ep|f (x; D)] —E(y|x))2+Ep|(f (x;D) ~ En[f (x; D)})?].
The second term (the “variance” of the estimaftox, D)) vanishes iff (x; D) equal<Ep [ f (x; D).
The motivates the idea of using an approximatioregff (x;D) as a predictor. Ibagging
the approximation is obtained by averaging over functions trained fn@xamples drawn at
random with replacement from the training Betbootstrap method). The method works best
if 7 is not biased (i.e., contairtsy|x)). Most models with low bias have a high variance and
vice versa, hence the well-known bias/variance tradeoff.

Concept space.A space of data generative models from which the data are drawn. Na to b
confused wittmodel spaceor hypothesis space

Empirical risk. An estimator of theexpected riskthat is the average of the loss over a finite
number of examples drawn accordingRex,y): Remp= (1/m) S L f(X), k).
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Ensemble methods.Methods of building predictors using multipbase learners which vote to
make predictions. Predictions pare made using a convex combination of functiéps #:
F(x) = Y pjfj(x), wherep; are positive coefficients. The two most prominent ensemble
methods are bagging (Breiman, 1996) and boosting (Freund and SshBE@®6). Bagging
is a parallel ensemble method (all trees are built independently from traiabagsdbsets),
while boosting is a serial ensemble method (trees complementing each othepgresp
sively added to decrease the residual error). Random ForestgBR#tinan, 2001) are a
variant of bagging methods in which both features and examples arengpilesia Boosting
methods come in various flavors including Adaboost, Gentleboost, and bogttbrhe orig-
inal algorithm builds successive models (called “weak learners”) lameting data in a way
that emphasizes examples that have proved hardest to learn. Negiensarse a weighting
scheme instead of resampling (Friedman, 2000).

Expected risk. The mathematical expectation of a risk functional over the unknown pildigab
distributionP(x,y): R[f] = [ L(f(x),y) dP(x,y). Also calledgeneralization error.

Generalization error. Seeexpected risk

Greedy search strategy.A search strategy, which does not revisit partial decisions already,made
is called “greedy”. Examples include forward selection and backward ediioimin feature
selection.

Guaranteed risk. A bound on theexpected risk SeePAC learning and Structural Risk Mini-
mization (SRM).

Hypothesis space.A space of models, which are fit to data, not necessarily identical twoheept
space(which is often unknown).

Loss function. A function L( f(x),y), which measures the discrepancy between target vglaed
model predictions (x). Examples include the square logs- f(x))? for regression of the
0/1 loss1[f(x) #y] for classification).

MAP learning. Maximum a posteriori (MAP) learning shares the same framework as Bayes
learning, but it is further assumed that the postePigi|D) is concentrated and the{(y|x, D)
can be approximated b§*(x), with f* = argmaxP(f|D) = argmaxP(D|f)P(f) =
argmiry — InP(D|f) —InP(f). If we assume a uniform prior, we are brought back to maxi-
mum likelihood learning. If bottiP(D|f) andP(f) are exponentially distributedP(y|x, f) =
exp— L(f(x),y) andP(f) = exp— Q[f]), then MAP learning is equivalent to the minimiza-
tion of a regularized risk functional.

Maximum likelihood learning. It is assumed that the data were generated by an input distribution
P(x), a functionf from amodel spacef coinciding with theconcept spaceand a zero-mean
noise model For regression, for instance, if Gaussian neise\((0,6?) is assumedy is dis-
tributed according t®(y|x, f) = A((f(x),0?). In the simplest cas®(x) and the noise model
are not subject to training (the values»oére fixed and the noise model is known). Learn-
ing then consists in searching for the functibh which maximizes the likelihoo&(D|f),
or equivalently (sinceéP(x) is not subject to trainingf* =argmaxP(y|X, f) =argmiry —
InP(y|X, f). With thei.i.d. assumption,f* =argmax M ,P(yk|Xk, f) =argmirg 3}, —
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InP(yk|Xk, T). For distributions belonging to the exponential famig(y|x,f) =
exp{—L(f(x),y)}, the maximum likelihood method is equivalent to the method of mini-
mizing theempirical risk . In the case of Gaussian noise, this corresponds to the method of
least squares.

Model space. A space of predictive models, which are fit to data. Synonyihygiothesis space
For Bayesian models, also generally coincides withcirecept spacebut not for frequen-
tists.

Monte-Carlo Markov Chain (MCMC) method. To approximate Bayesian integrals one can sam-
ple from the posterior distributioR( f|D) following a Monte-Carlo Markov chain (MCMC),
then make predictions accordingBdgy|x, D) = ¥ fj(x). InaMCMC, at each step new can-
didate modelsfj € ¥ are considered, in a local neighborhood of the model selected at the
previous step. The new model is accepted if it provides a better fit to thadedading to the
posterior distribution or, if not, a random decision is made to accept it, follpwia Gibbs
distribution (better models having a greater chance of acceptance).

Over-fitting avoidance. Model selection is traditionally associated with the so-called problem of
over-fitting avoidance. Over-fitting means fitting the training examples well (i.e., obtaining
large model likelihood or low empirical risk values, computed from training)d#tat gen-
eralizing poorly on new test examples. Over-fitting is usually blamed on toe kilgrge
number of free parameters to be estimated, relative to the available numbamafgrex-
amples. The most basic model selection strategy is therefore to restrictrtiienof free
parameters according to “strict necessity”. This heuristic strategy idlystsced back in
history to the principle known as Ockham’s razor “Plurilitas non est poasimdnecessitate”
(William of Ockham, 14" century). In other words, of two theories providing similarly good
predictions, the simplest one should be preferred, that is, shavedfaasary parameters.
Most modern model selection strategies claim some affiliation with Ockham’s, taztathe
number of free parameters is replaced by a measucapEcity or complexity of the model
classC[¥]. Intuitively, model classes with lardg{ ] may include the correct model, but it
is hard to find. In this case, even models with a low training error may haveye ¢gmer-
alization error (high “variance”; over-fitting problem). Conversely, mladasses with small
C[#] may yield “biased” models, that is, with both high training and generalizatiaor err
(under-fitting). Sedias/variance decomposition.

PAC learning. The “probably approximately correct” (PAC) learning proceduresk sefunction
minimizing aguaranteed risk Ryua f] = Rem f] 4+ €(C, d) such that with (high) probability
(1-9), R[f] < Rgua f]. Cis a measure of capacity or complexity.

Regularizers and regularization. The regularization method consists of replacing the minimiza-
tion of the empirical risk Remg f] by that of Reg[f] = Remp+ Q[f]. A regularizerQ|f]
is a functional penalizing “complex” functions. If bofR,[f] and Q[f] are convex, there
is a unique minimum oRgy[f] with respect tof. In MAP learning, —InP(f) can be
thought of as aegularizer. One particularly successful regularizer is the 2-norm regular-
izer ||f||§[ for model functionsf (x) = S ; akK(x,xx) belonging to a Reproducing Kernel
Hilbert Space# (kernel methods). In the particular case of the linear mdde) = w - x,
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we have| f|[2. = |lw||2, a commonly used regularized found in many algorithms includ-
ing ridge regression (Hoerl, 1962) and SVMs (Boser et al., 1992)théngeneral case,
I£[|2, = fK~f = a"Ka, wheref = [f (x|, is the vector of predictions of the training
examples,a = [ak]’ ; andK = [K(xh,Xk], h=1,..m k=1,..m. Due to the duality be-
tween RKHS and stochastic processes (Wahba, 1990), the functions RKIHS can also
be explained as a family of random variables in a Gaussian process)iagsa priorP(f)
proportional to exp—y| f||,) = exp(—yfK~1f) and the kernel matrix K is interpreted as a
covariance matriX (Xp,Xx) =coV{ f (X), f (%)]-

Risk minimization. Given amodel spaceor hypothesis spacef of functionsy = f(x), and a
loss function L(f(x),y), we want to find the functioi* € ¥ that minimizes theexpected
risk R[f] = [ L(f(x),y) dP(x,y). SinceP(x,y) is unknown, only estimations & f] can be
computed. The simplest estimator is the average of the loss over a finite nufrde@mo
ples drawn according tB(x,y) called theempirical risk: Remp= (1/m) 31 L f(Xk),Yk)-
The minimization of the empirical risk is the basis of many machine learning apgpsac
to selectingf*, but minimizing regularized risk functionals is often preferred. &spilar-
ization. Also, related are thBAC learning procedures and the method $fructural Risk
Minimization (SRM).

Search strategy. There areoptimal search strategiesvhich guarantee that the optimum of the
evaluation function will be found, including tlexhaustive searamethod, for discrete hyper-

parameter spaces. The poputgid searchmethod for continuous hyper-parameter spaces

performs an exhaustive search, up to a certain precision. A redtdedastic searcmethod

is uniform sampling Uniformly sampling parameter space may be computationally expensive

and inefficient. If we use a non-uniform distributi@{€) to sample hyper-parameter space,

which resemble®(f(0)|D), the search can be made more efficient. This idea is exploited in
rejection samplingandimportance samplingaccording to these methods a Bayesian ensem-

bleF(x) = S Wi f (X; 8x) would use weightv, proportional toP(f(6)|D)/G(0). Because of
the computational burden of (near) optimum strategies, other strategieffemeemployed,
usually yielding only docal optimum These includesequential search strategiesich as
coordinate ascentr descent (making small steps along coordinate axepatiern search
(Momma and Bennett, 2002) (making local steps according to a certain pattdich, by
accepting only moves that improve the evaluation function, find the local optimearest
to the starting point. Some stochastic search methods accept moves nsangcasprov-
ing the value of the evaluation function, like simulated annealiniylarkov chain Monte

Carlo (MCMC) methods. Both methods accept all moves improving the evaluation function

and some moves that do not, for example, with probability-ekp/T, where T is a posi-
tive parameter (T=1 for MCMC and progressively diminishes for simulategaling). Such
stochastic methods search hyper-parameter space more intensively aotdscome stuck
in the nearest local optimum of the evaluation function.

Semi-supervised learning.In semi-supervised learning, in addition to the labeled data, the learn-

ing machine is given a (possibly large) set of unlabeled data. Such lediatbata may be
used for training or model selection.

Structural Risk Minimization. The method of Structural Risk Minimization (SRM) provides aeans

of building regularized risk functionals (s&egularization), using the idea ofjuaranteed
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risk minimization, but not requiring the calculation of the model class capacity or keorp
ity, which is often unknown or hard to compute. In the risk minimization framewior& not
assumed that the model space includes a function or “concept”, whienajed the data (see
concept spacendhypothesis spack

Supervised learning. Learning with teaching signal or targgt

Under-fitting. While over-fitting is the problem of learning the training data too well the expense
of a largegeneralization error, under-fitting is the problem of having a too weak model not
even capable of learning the training data and also generalizing poorly.

Unsupervised learning. Learning in the absence of teaching signal or tayget

Weighted majority algorithm. To approximate Bayesian integrals one can draWAsarrpreai—
formly from the model space of functior’s and make predictions accordingEgy|x,D) =

> i P(fj|ID)fj(x).
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