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Abstract

Many semi-supervised learning algorithms only
deal with binary classification. Their extension to the
multi-class problem is usually obtained by repeatedly
solving a set of binary problems. Additionally, many
of these methods do not scale very well with respect
to a large number of unlabeled samples, which limits
their applications to large-scale problems with many
classes and unlabeled samples.

In this paper, we directly address the multi-class
semi-supervised learning problem by an efficient
boosting method. In particular, we introduce a new
multi-class margin-maximizing loss function for the
unlabeled data and use the generalized expectation
regularization for incorporating cluster priors into
the model. Our approach enables efficient usage of
very large data sets. The performance and efficiency
of our method is demonstrated on both standard ma-
chine learning data sets as well as on challenging
object categorization tasks.

1. Introduction

Supervised learning algorithms requires a huge
amount of labeled data which are often hard or costly
to obtain. Semi-supervised methods offer an inter-
esting solution to this requirement by learning from
both labeled and unlabeled data. In the literature,
one can find three main semi-supervised learning
paradigms: 1) Some algorithms learn the cluster or
manifold structure of the feature space with unla-
beled samples and use it as an additional cue for the
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supervised learning process, for example cluster ker-
nels [8], label propagation [28], Laplacian SVMs [3].
2) Some methods, such as Transductive Support Vec-
tor Machines (TSVM) [12, 24], try to maximize the
margin of the unlabeled samples by pushing away
the decision boundary from dense regions of feature
space. 3) In co-training [4] two initial classifiers are
trained on some labeled data and then they label un-
labeled data for re-training of the other one.

The computational complexity of many of state-
of-the-art semi-supervised methods limits their ap-
plication to large-scale problems [17]. This is spe-
cially counter-productive for computer vision tasks,
such as object recognition or categorization, where a
huge amount of unlabeled data is very easy to obtain,
for example, via Web downloads.

Most of recent research has focused on binary
classification problems, where multi-class problems
are often tackled by applying the same algorithm to a
set of decomposed binary tasks. Typical approaches
are the 1-vs.-all, 1-vs.-1, and error correcting out-
put codes [1]. However, multiple repetition of an al-
ready heavy-duty algorithm is not an attractive option
for solving problems with many classes and samples.
Also, in the case of the 1-vs.-all approach one intro-
duces additional problems, such as producing unbal-
anced datasets or uncalibrated classifiers.

Hence, having an inherent multi-class semi-
supervised algorithm with low computational com-
plexity is very interesting for large-scale applica-
tions. Methods addressing both of these issues are
very rare to find in the literature. Xu and Schuur-
mans [27] introduce a multi-class extension to the
TSVM which, as stated in the paper, is computa-
tionally more intensive than the original TSVM for-
mulation. Song et al. [25], and Rogers and Giro-
lami [20] propose the use of Gaussian Processes,
while Azran [2] use Markov random walks over a
graph for solving the multi-class semi-supervised



problems. However, the computational complexity
of these methods are in the order of O(n?).

In this paper, we directly address this problem by
developing a multi-class semi-supervised boosting
method. There exist previous approaches to multi-
class boosting, most notably the recent work of Zou
et al. [29]. Other methods such as [10, 26] still
decompose the multi-class problem to binary tasks.
Also, there are semi-supervised boosting methods,
such as [14, 22] and references therein. However,
none of them propose a unified solution to the multi-
class semi-supervised learning problem.

In our approach, we not only solve the multi-class
semi-supervised problem directly and efficiently, but
also we combine the ideas from both major trends of
semi-supervised learning. We propose a novel mar-
gin maximizing loss function for the unlabeled sam-
ples and replace the structure assumption with a set
of priors induced from the groups of similar sam-
ples. Our method is able to aggregate multi-class
classifiers (without a need to solve several binary
tasks) as its weak learners. Altogether, it enables us
to reduce the complexity of the previous approaches
while still being able to use such structural cues dur-
ing the learning process. The experimental results
on the challenging PASCAL 2006 [9] object cate-
gorization problems show that we can improve both
the classification accuracy and the computation time
compared to other methods.

2. Multi-Class Semi-Supervised Boosting

Let A} = {(thl)a Ceey (XNl,le)} and X, =
{x1,...,%xn,} denote the set of labeled and unla-
beled samples from a D-dim feature space. We de-
note the labels as y € {1,--- , K}, where K is the
number of classes. In this section, we briefly review
the multi-class loss function we will use and some
major semi-supervised learning paradigms.

2.1. A Review of Multi-Class Supervised Loss

Recently, Zou et al. [29] extended the concept
of Fisher-consistent loss functions [16] from binary
classification to the domain of multi-class problems.
This concept explains the success of margin-based
loss functions and their statistical characteristics.

Let f(x) = [fi(x), -, fx(x)]T be a multi-
valued function, p(y = i|x),i = 1,- -+ , K be the un-
known conditional class probabilities, and £( f;(x))

be a loss function. f(x) is called a margin vector, if

K
Vx : Zfi(x) =0. 1)
=1

The loss function £(-) is Fisher-consistent, if the min-
imization of the expected risk

£(x) = argmin / 0, (0)p(y, x)d(xy) @)
f(x) (x,9)

has a unique solution and
C(x) = arg max f;(x) = arg max p(y = i|x),
i i

3)
where C'(x) is the learnt multi-class classifier. Thus,
by minimizing a Fisher-consistent margin-based loss
function, one can approximate the unknown Bayes
decision rule. This extends the notion of margin
from binary classification to the multi-class case:
the margin of the i*" class, denoted as fi(x), is di-
rectly related to the class conditional probabilities
p(y = i|x). Note that because of the symmetry con-
dition Eq.(1), maximizing the margin of a class is
equivalent to reducing the margin of all other classes.

In this respect, the exponential loss ¢(f(x)) =
e~ f®) s a Fisher-consistent loss [29] and its esti-
mated conditional probabilities can be written as

efi(x)
ZJI'(:I efj (x) ’

which is a symmetric multiple logistic transforma-
tion. In this paper, we use this loss function to obtain
a multi-class boosting algorithm. It should be noted
that usually the true conditional class probabilities in
Eq.(2) are unknown. Therefore, given a set of i.i.d.
samples, we use the empirical risk

LEx),X) = Y e vt 5)

(x,9)€X

ply =ilx) = “

2.2. Semi-Supervised Regularization

Many semi-supervised learning algorithms use
the unlabeled samples to regularize the supervised
loss function in the form of

Yo Uy h()+A Y u(h(x),  (©)

(x,y)eX; XEX,

where h(-) is a binary classifier, and /,(-) encodes
the penalty related to the unlabeled samples. For ex-
ample, variants of TSVMs [12] maximize the margin
for the unlabeled samples by using

£, (h(x)) = max(0,1 — |h(x)]). @)



Another popular method is the manifold regulariza-
tion used in the graph-based methods, e.g., label
propagation [28] and Laplacian SVM [3]

Cu(h(x)) = Y sGex)|lh(x) = ()P, ®)
x'EXu
x'#£x
where s(x,x’) is a similarity function. Using this
penalty term, one can enforce the classifier to pre-
dict similar labels if the samples are similar. While
the graph-based methods are powerful, the pair-wise
terms increase their computational complexity.

2.3. Our Method

In order to benefit from both of these ideas, we
propose a multi-class multi-objective loss function as

> ety ©)

(x,y)EX;

o Y LX)+ 8D lnl(f(x)).

XEX, XEX,

L(£(x),X) =

The first regularization term £.(-) penalizes the de-
viations of the model from the cluster assumption,
while the second term /,,(-) is a multi-class margin
maximizing loss. This formulation makes it possibile
to tune the loss for a specific problem, where one or
both of these penalties might be helpful.

2.3.1 Multi-Class Cluster Regularizer

Our method is a direct application of the clus-
ter/manifold assumption: we want consistent label-
ings for similar samples. However, instead of a for-
mulation like Eq.(8), we directly use the unlabeled
data to identify groups of similar samples (clusters)
with respect to the similarity function s(x, x’). Then,
we relate the clusters with possible labelings of them,
by estimating the label density in each of these re-
gions. This results in a set of prior conditional prob-
abilities in form of p,(y = i|x),7 € {1,---,K}.
Now, we replace the hard consistent labeling require-
ment by enforcing the learning model to produce a
consistent probabilistic estimates over these regions.

Let @ = {q1, -+ ,qv} be the clusters returned
by the unsupervised clustering method using both la-
beled and unlabeled samples, and s(x,x’) as a simi-
larity function. We estimate the prior for all samples
within a cluster as

¢ + p(i)m

I TR (10)
K P b
S gl +m

VX € qp i pply =ilx) =

where |¢!| is the number of samples from class i in
cluster v, p(i) is the label prior, and m is a positive
number. Note that we use a M-estimation smoothing
term in order to obtain a more robust estimate of the
cluster priors [6]. If a cluster does not contain any
labeled sample, we assign an equal probability to all
classes for that partition. In practice, we can run the
clustering algorithm a few times with different initial
conditions and parameters, and average their results.

The next step is to enforce the model to be consis-
tent with these priors. The Generalized Expectation
(GE) criteria proposed by McCallum et al. [19] pro-
vides a nice framework to incorporate such a prior
knowledge into the learning of a model. The gener-
alized expectation describes our belief about how a
model should generalize in some prefered directions.

We use the Kullback-Leibler (KL) divergence as
the loss for cluster regularization term

Le(f(x)) = D(ppr)) = _H(pp) + H(pp,ﬁ), (11

where D is the KL-divergence, H (p,) is the entropy
of the prior distribution, and H(p,,p) is the cross
entropy between the prior and the learning model.
Since H(p,) is a constant and does not depend on
the optimized model, we can simply drop it. For no-
tational brevity, let p, ; = p,(y = i|x), p; = p(y =
i|x), and p, = [pp.1, - ,Pp.i)’ . Then by using
Eq.(4) as the probabilistic model, we can further de-
velop the cross entropy as

K
H(py,p) ==Y _ ppilogp; = (12)
=1

K K
- pr,ifi(x) + log E efi(x)
i=1 =

Thus, the cluster regularizer can be written as

K
le(f(x)) = —pp(x) +1log > _efi). (13)
j=1

2.3.2 Multi-Class Margin Regularizer

We also introduce a novel margin maximizing loss
over the unlabeled samples, by extending the sym-
metric hinge loss function of the TSVM, Eq.(7) to
the multi-class case in form of

£, (£(x)) = max(0, M — max (fi(x)). a4

Here, the intuition is the fact that for the multi-
class problems, the f; provides the margin for the



class 7 and the approximated Bayes classification rule
of Eq.(3) selects the class with the highest margin.
Therefore, this loss function will try to maximize the
margin of the unlabeled sample until it passes M.

Discussion In the absence of labels, semi-
supervised methods often try to impose assumptions
about the unlabeled data for the learning model and,
possibly, their relation to the class labels. Hence,
the validity of these assumptions over the unknown
structure of the feature space determines the success
of these methods. Our method is no exception to
this. However, our framework provides an easy way
to change the assumptions by replacing the cluster
prior with any other source of useful information,
like label priors [17], knowledge transfer priors [22],
or human knowledge [23].

2.4. Learning

To optimize the regularized loss functions intro-
duced in the previous section, we consider a general
additive boosting approach in form of

flx)=v) g'(x), (15)

where v € (0, 1] is the shrinkage factor, and g’ (x) is
the base function (or the weak learner). Note that the
shrinkage factor replaces the o, (weights of the weak
learners) in the traditional boosting algorithms. As
several researchers [21] suggested, using a shrinkage
factor usually slows down the learning of the model,
but improves the classification accuracy over using a
line search to select the a.

We adopt the functional gradient descent view of
boosting [18, 10] to iteratively learn the base func-
tions. In this approach, boosting is used as a coor-
dinate descent algorithm: at each iteration, we find a
base function which provides the steepest descent in
the loss. To accomplish this task, we try to find the
best base function which has the highest correlation
with the negative direction of the gradients of the loss
for the current position of the model

g'(x) = argmax — VL g(x), (16)
g(x)

where V L is the gradient vector of the loss at f(x) =
t—1 L
v k=18 (X).

The gradients of the loss functions of Eq.(9) with

respect to the current model, f(x) can be written as

OL(f(x), X) N = fi(x)
Dt Sl Gl I(y = i(X)_
AP e
efi(x)

_ax;u (pp.i = < efj(x))_

Ap;
a7

—B > 1 = k)I(fi(x) < M),

XEX, s

where I(-) is an indicator function, using Eq.(4)

Ap; = pp,i — D; is the residual error for estimating

the prior of class 4, and k = argmax f;(x) is the in-
J

dex of the class with largest margin. Lety = [I(y =

]-)a T 7H(y = K)]T’ Ap = [Apl, e aApK}T and
m = [mq,--- ,mg|’. Then the learning process of
tth base classifier can be written as

g'(x) = arg max Z e fyTg(x)+
g() (x,y)eX;

+ 3" (alp + fm) g(x) (18)

xeX,

The following Lemma provides a general solution for
these learning problems using multi-class classifiers.

Lemma 2.1. The solution of Eq.(18) using a multi-
class classifier C(x) € {1,--- , K} is

Ci(x) = arg(m)in Z wl(C(x) # y)+

(x,9)€EX,
+ ) wl(Cx)#£2)  (19)
xeX,
where w; = e fv™) is the weight for a labeled
sample, z = argmax (aAp; + fm;) and w, =

K3
alAp, + Bm., are the pseudo-label and weight for an
unlabeled sample, respectively.

Proof. Note that a multi-class classifier C'(x) can be
represented as a margin vector g;(x) = I[(C(x) =



i) — % Thus, the Eq.(18) becomes

Y w(l(CHx) =y) - %)Jr
(x,9)€X;
S 1
+ 30 Y (adpi+ pm) (IC) =)~ ) =
XEX, =1
= Y wl(Cx)=y)+
(x7y)€Xl

K
+ 30 S (adpi + Bm) I(C(x) = i) + const.

xedX, i=1
Since C(x) is a multi-class classifier

K
> (aApi+Bm;)I(C(x) = i) =
i=1
=aApc(x) + Bmox) < Wy-

Therefore, if we choose z = argmax (aAp; +

(m;) as the target label of the unlabeled sample, we
maximize the correlation between the base classifier
and the gradients of the loss function. Hence, the
learning problem becomes

Ci(x) = arg max Z wl(C(x) =vy)
Ok (x,9)EX]

+ ) wI(C(x) =2)

xXEX,

which is equivalent to minimizing the weighted mis-
classification error rate shown in Eq.(19). O

Discussion So far we have presented a Regu-
larized Multi-class Semi-supervised Boosting algo-
rithm, which we name RMS-Boost. This algorithm is
able to directly aggregate multi-class weak learners
and utilize unlabeled samples. The class of decision
trees is a suitable candidate for the weak learners.
Specifically, the random forests [5] produce an ex-
tremely fast solution.

3. Experiments

We conduct experiments on two machine learn-
ing datasets as well as challenging object category
recognition dataset on Pascal VOC2006 [9]. The
main goal of these evaluations is to compare our
method with other semi-supervised methods which
are proposed for large scale datasets. Note that the
VOC2006 dataset offers a challenging benchmark

Dataset ‘ # Train ‘ # Test ‘ # Class ‘ # Feat. ‘
Letter 15000 5000 26 16
Senslt (com) | 78823 | 19705 3 100

Table 1. Data sets for the machine learning experiments.

where a simple representation already achieves good
results without a need for complicated feature tun-
ings. For sanity check, we also show the performance
of the state-of-the-art supervised algorithms.

In these experiments, we compare to the follow-
ing methods: 1) AdaBoost. ML [29]: a multi-class
boosting algorithm based on minimizing the logit
loss function. We will refer to this method as AML
in the experiments. 2) Kernel SVM: for machine
learning datasets we use the RBF kernel, while for
object category recognition, we use the pyramid x?
kernel. 3) MS-TSVM [24]: Multi-Switch TSVM is
probably the fastest version of the popular TSVM.
4) SERBoost [22]: a semi-supervised boosting algo-
rithm based on the expectation regularization. We
will denote this method as SER. 5) RM-Boost: the
supervised version of our method (when o = 0 and
B = 0). We will refer to this method as RMB.

We apply the 1-vs.-all strategy to those meth-
ods which are not inherently multi-class. Prelimi-
nary evaluations of our method showed that setting
B = 0.1a produces acceptable results. Thus, we use
this setting for all experiments. We perform a 5-fold
cross-validation to select the rest of the hyperparam-
eters for all methods. We set the number of itera-
tions 7" to be 10000 for all boosting methods and use
extremely randomized forests [11] with 10 trees as
weak learners. In order to obtain the cluster prior,
we run the hierarchical kmeans clustering algorithm
10 times by setting the number of clusters to be 50K
(where K is the number of classes) and average the
prior for each sample. We also set the smoothing fac-
tor of the probability estimates to be m = 50.

3.1. Machine Learning Datasets

We use the Letter and Senslt datasets from the
LibSVM repository [7]. A summary of these sets is
presented in Table 1. We randomly partition the orig-
inal training set into two disjoint sets of labeled and
unlabeled samples. We randomly select 5% of the
training set to be labeled and assign the rest (95%) to
the unlabeled set. We repeat this procedure 10 times
and report the average classification accuracy in Ta-
ble 2. As can be seen from this table, our method
achieves the best results over these datasets com-



[ Method | AML [ svm [ Tsvm [ SER | RMB | RMSB |

Letter 72.3 70.3 65.9 76.5 74.4 79.9
Senslt 79.5 80.2 79.9 81.9 79.0 83.7

Table 2. Classification accuracy (in %) for machine learn-
ing datasets. The RMSB stands for our method.

’ Method ‘ AML ‘ SVM ‘ TSVM ‘ SER ‘ RMB ‘ RMSB ‘

Letter 22 25 74 3124 21 125
Senslt 28 195 687 1158 27 514

Table 3. Computation (train+test) time (in seconds) for ma-
chine learning datasets.

pared to all other methods. Table 2 also shows the
average computation time for these methods. Since
our method processes 20 times more unlabeled data
on these datasets, it is slower than the supervised
boosting methods. However, compared to the other
semi-supervised methods, our method is faster in the
presence of large amount of data.

We also examined the relative contribution of each
of the unlabeled regularizer terms. On the Letter
dataset, using only the cluster regularizer results in
78.7% classification accuracy, while using only the
margin term produces 75.1%. However, using both
terms we can see that the performance is boosted to
79.9%. Similar to TSVMs, the margin term resem-
bles a kind of self-learning strategy. Thus, its perfor-
mance highly depends on the quality of the overall
classifier. Therefore, in our case, the cluster prior
helps to produce a boosted classifier while the mar-
gin term helps to improve the decision margins.

3.2. VOC2006 Dataset

For the VOC2006 dataset, we follow a fairly stan-
dard bag-of-words approach by extracting the SIFT
descriptors on a regular dense grid of size 8 pixels at
multiple scales of 8, 16, 24, and 32 pixels. We find
the class-specific visual vocabulary by randomly se-
lecting descriptors from 10 training images of each
class, and forming 100 cluster centers using k-means.
The final vocabulary is the concatenation of all class-
specific cluster centers. We use the L;-normalized 2-
level spatial pyramids [13] to represent each image,
and as a result, the feature space is 5000 dimensional.
Note that since the VOC2006 presents a multi-label
classification problem (some images contain more
than one object), we duplicate the multi-label sam-
ples of the training set and assign a single label to
each of them. Also during the test phase, we assign

VOC2006
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Figure 1. Classification accuracy with respect to the ratio
of labeled samples.

a correct classification if at least one of the labels is
predicted correctly. We should emphasize that for the
VOC2006 challenge the binary AUC was the perfor-
mance measure. However, it is not trivial to extend
the ROC curve analysis of binary classification to the
multi-class problems directly (e.g., [15]). Therefore,
we decided to use the other natural alternative which
is the classification accuracy.

We randomly partition the training set of
VOC2006 dataset into two disjoint sets of labeled
and unlabeled samples. The size of the labeled par-
tition is set to be » = 0.01, 0.05, 0.1, 0.25, and 0.5
times the number of all training samples. We repeat
the procedure 10 times and measure the average clas-
sification accuracy over the test set. Note that for
these experiments we do not show the results for the
supervised version of our method as its performance
is similar to that of Adaboost.ML.

Figure 1 shows how the classification accuracy
evolves when the number of labeled samples changes
in the training set. As can be seen, our model
achieves the highest accuracy compared to others.
The dashed yellow line shows the best results ob-
tained by other methods (SERBoost at » = 0.5). We
can see that our method surpasses the accuracy of the
SERBoost by using only half of the labeled samples.

Our method not only obtains the best overall re-
sults, but also is the fastest compared to the other
semi-supervised algorithms. This can be seen in Fig-
ure 2 where the computation (training and test) time
is presented for two different ratios of labeled sam-
ples in the training set. Thus, using proper regular-
ization and solving the multi-class problem directly



Computation Time
10000

. =01
= r=05
8000
—
]
@ 6000
2
£
<= 4000
[
2000
0
RMSB SER TSVM

Figure 2. Computation (train+test) time for two different
ratios of labeled samples for semi-supervised methods.

is essential in reducing the computation time.

Figure 3(a) shows how the accuracy changes with
respect to a. As it can be seen, the performance does
not vary considerably for a large range of « values.
We found that setting « to the ratio of labeled sam-
ples, ie., a = ﬁ, often produces acceptable
results. Figure 3(b) presents the effects of the shrink-
age factor v. Here, it becomes clear that selecting
a proper value for v is essential in order to obtain
a good result. This is no surprise as it is an estab-
lished fact that selecting the proper step size for the
gradient-based optimization methods is important for
robustness of the overall optimization procedure.

Since we perform gradient descent by using multi-
class classifiers, it is interesting to see how success-
ful the optimization process is. Figure 4(a) plots the
classification accuracy (blue), the average gradients
for the labeled (green) and unlabeled (red) samples
as a function of the boosting iterations. After an
initial rise, the accuracy slowly improves over time.
Accordingly, the gradients for the labeled samples
also continue to converge to very small values which
shows that the optimization over the labeled samples
is also successful. However, the gradients for the un-
labeled samples converge to a relatively small value.
Further investigations of the weights and the clus-
ter prior seem to clarify this behavior. Figure 4(b)
shows the average weights of unlabeled samples in
two groups: 1) those shown in green where the prior
is correct about their true (hidden) label, and 2) those
shown in red where the prior is wrong. In this ex-
ample, the correct number is about 582 while the
number of outliers is almost two times bigger: 1091.
Therefore, we can see that our algorithm is able to
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Figure 3. The effects of changing (a) «, and (b) the shrink-
age factor v over the classification accuracy.
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Figure 4. (a) Classification accuracy (blue), and average
gradients for labeled (green) and unlabeled (red) samples
versus the number of iterations. (b) The average weights
for the unlabeled samples where the prediction of the prior
was correct (green) or wrong (red).

resist learning these outliers, to some extent, and
hence, there is always a residual error in the unla-
beled loss with respect to these samples. This shows
that the optimization procedure is successful in pro-
ducing a balance between learning from the labeled
data and from a very noisy (and mostly wrong) prior.

4. Conclusion

In this paper, we presented a novel multi-class
semi-supervised boosting method based on a new
combined large margin and cluster regularization. In
contrast to other semi-supervised approaches, we di-
rectly addressed the multi-class problem by develop-
ing an efficient semi-supervised boosting procedure.
Furthermore, it is easy to incorporate any source of
prior knowledge into our learning method. Our ap-
proach shows improved efficiency and accuracy on
common machine learning datasets as well as on
challenging visual object categorization tasks.
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