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Conclusions: Beta version 0.1

We propose a semi-supervised boosting algorithm

which solves multi-class problems without decomposing them into
binary tasks.

Additionally, our algorithm scales very well with respect to the
number of both labeled and unlabeled samples.

Amir Saffari, Christian Leistner, Horst Bischof (Institute for Computer Graphics and Vision, Graz University of Technology, Austria)Regularized Multi-Class Semi-Supervised Boosting CVPR 2009, June 22, 2009 5 / 1



Graz University of Technology

Conclusions: Beta version 0.1

We propose a semi-supervised boosting algorithm

which solves multi-class problems without decomposing them into
binary tasks.

Additionally, our algorithm scales very well with respect to the
number of both labeled and unlabeled samples.

Amir Saffari, Christian Leistner, Horst Bischof (Institute for Computer Graphics and Vision, Graz University of Technology, Austria)Regularized Multi-Class Semi-Supervised Boosting CVPR 2009, June 22, 2009 5 / 1



Graz University of Technology

Conclusions: Beta version 0.1

We propose a semi-supervised boosting algorithm

which solves multi-class problems without decomposing them into
binary tasks.

Additionally, our algorithm scales very well with respect to the
number of both labeled and unlabeled samples.

Amir Saffari, Christian Leistner, Horst Bischof (Institute for Computer Graphics and Vision, Graz University of Technology, Austria)Regularized Multi-Class Semi-Supervised Boosting CVPR 2009, June 22, 2009 5 / 1



Graz University of Technology

Outline
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SSL Methods

Semi-Supervised Learning

Semi-supervised learning is a class of machine learning techniques that
make use of both labeled and unlabeled data for training.

There exists many SSL methods, see:

X. Zhu, “Semi-Supervised Learning Survey”, 2008 and
O. Chapelle, B. Schoelkopf, A. Zien, “The Semi-Supervised Learning”,
Cambridge, 2006.
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Motivations

Many successful SSL methods do not scale very well w.r.t. the
number of unlabeled samples, or are very sensitive to the choice of
hyper-parameters (G. Mann, A. McCallum, ICML 2007). Expect to
see O(n3) many times.

Usually multi-class problems are solved via 1-vs-all and occasionally
with 1-vs-1 decompositions.
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What is wrong with 1-vs-all?

Do you want to repeat a slow method a few more of times?

Calibration problems (B. Schoelkopf, A. Smola, 2002).

Artificial unbalanced binary problems.

There exists slow multi-class SSL methods, see the details in the
paper.
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Multi-Class Semi-Supervised Boosting

Multi-class classifier: f(x) = [f1(x), · · · , fK (x)]T .

Overall Loss

L(f(x),X ) =
∑

(x,y)∈Xl

`(f(x))

︸ ︷︷ ︸
Labeled

+α
∑
x∈Xu

`c(f(x)) + β
∑
x∈Xu

`m(f(x))︸ ︷︷ ︸
Unlabeled

(1)

Boosting Model

f(x) = ν

T∑
t=1

gt(x) (2)
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Fisher-Consistent Loss Functions

Vladimir Vapnik (picture courtesy of Yann LeCun)
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Fisher-Consistent Loss Functions

Margin Vector

f(x) is a universal margin vector, if ∀x :
∑K

i=1 fi (x) = 0.

Fisher-Consistent Loss

`(·) is Fisher-consistent, if the minimization of the expected risk:

f̂(x) = arg min
f(x)

∫
(x,y)

`(fy (x))p(y , x)d(x, y) (3)

has a unique solution and

C (x) = arg max
i

f̂i (x) = arg max
i

p(y = i |x). (4)

L(f(x),Xl) =
∑

(x,y)∈Xl

e−fy (x)

Zou et al., Annals of Applied Statistics, 2008
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Margin Assumption
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Margin Assumption

Put the decision boundary over low-density regions of features space. This
is equivalent to maximizing the margin of the unlabeled samples.

Example

Transductive Support Vector Machines (TSVM, T. Joachims, ICML 1999)
uses this loss function for the binary SVM classifier h(x)

`u(h(x)) = max(0, 1− |h(x)|) (5)

Multi-Class Unlabeled Margin

We propose to maximize the multi-class margin of the unlabeled samples
by using

`m(f(x)) = max(0,M −max
i

(fi (x))). (6)
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Manifold Assumption
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Manifold Assumption

Enforce the classifier to predict similar labels for similar unlabeled samples.

Example

Graph-based methods, such as Laplacian SVM (Belkin et al., JMLR 2006),
use this loss function for the binary SVM classifier h(x)

`u(h(x)) =
∑

x′∈Xu ,x′ 6=x

s(x, x′)‖h(x)− h(x′)‖2. (7)

Cluster Prior

We enforce the multi-class classifier to have a consistent probabilistic
estimates over regions of feature space formed by similar samples, i.e.
clusters.
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Cluster Priors

Cluster Prior

∀x ∈ Xu,∀i ∈ {1, · · · ,K} : pp(y = i |x) .

We use the Kullback-Leibler (KL) divergence

`c(f(x)) = −pT
p f(x) + log

K∑
j=1

efj (x). (8)

Use any clustering method which suits your application.

Use similarity functions if it helps clustering to recover the manifolds.

Use any other source of information in form of priors: label prior,
knowledge transfer, human prior knowledge.
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Learning with Functional Gradient Descent

F ∗(x) = F0(x)− ν
∑T

t=1
∂L
∂F |(Ft−1(x))

Friedman et al., Annals of Applied Statistics, 2001
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RMSBoost

Learning task for tth boosting stage becomes

gt(x) = arg max
g(x)

∑
(x,y)∈Xl

e−fy (x)yTg(x) +
∑
x∈Xu

(
α∆p + βm

)T
g(x). (9)

Theorem

The solution using a multi-class classifier C (x) ∈ {1, · · · ,K} is

Ct(x) = arg min
C(x)

∑
(x,y)∈Xl

wlI(C (x) 6= y) +
∑
x∈Xu

wuI(C (x) 6= z) (10)

where wl = e−fy (x) is the weight for a labeled sample,
z = arg max

i
(α∆pi + βmi ) and wu = α∆pz + βmz are the pseudo-label

and weight for an unlabeled sample, respectively.
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Experimental Settings

RMSBoost is compared with:

AdaBoost.ML (Zou et al., Annals of Applied Statistics 2008)
Kernel SVM
Multi-Switch TSVM (Sindhwani and Keerthi, SIGIR 2006)
SERBoost (Saffari et al., ECCV 2008)
RMBoost

Base learners are tiny extremely randomized forests, each consisting
of 10 trees.

Boosting iterations set to be 10000.

Results of hierarchical k-means is averaged 10 times to estimate the
cluster priors.

All boosting and RF methods are implemented in C++ and use
ATLAS subroutines.
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Machine Learning Datasets

5% of the training data is chosen randomly to form the labeled set, the
rest 95% is used as unlabeled set.

Dataset # Train # Test # Class # Feat.

Letter 15000 5000 26 16

SensIt (com) 78823 19705 3 100

Table: Data sets for the machine learning experiments.

Method AML SVM TSVM SER RMB RMSB

Letter 72.3 70.3 65.9 76.5 74.4 79.9

SensIt 79.5 80.2 79.9 81.9 79.0 83.7

Table: Classification accuracy (in %).
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PASCAL 2006 Object Categorization Dataset

Standard bag-of-words using quantized SIFT on a regular grid at
multiple scales.

Images are represented by L1-normalized 2-level spatial pyramids.

For SVM, pyramid χ2 kernel is used.
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PASCAL 2006 Object Categorization Dataset
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PASCAL 2006 Object Categorization Dataset
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PASCAL 2006 Object Categorization Dataset

RMSB SER TSVM
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With our current GPU implementation of random forest, once can get a
10 to 20 times speed up here. An additional 5 times speed up can be
achieved by reducing the iterations to 2000.
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Conclusions: Release version 1.0

We proposed a multi-class semi-supervised boosting method based on
margin maximizing and cluster prior regularizations.

By directly addressing the multi-class problem and using efficient base
learners, such as random forests, we showed that our algorithm not
only out-performs other supervised and semi-supervised methods, but
also achieves a high level of computational efficiency.

Additionally, our method provides a mean to incorporate other
knowledge sources, such as label priors, knowledge transfer priors, or
human knowledge.
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DAS-Forests

Semi-Supervised Random Forests, ICCV 2009.
Hope to see many of you at Kyoto.
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Learning with Functional Gradient Descent

X ∗ = X0 − ν
∑T

t=1 L′(Xt−1)

Friedman et al., Annals of Applied Statistics, 2000
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Learning with Functional Gradient Descent

F ∗(x) = F0(x)− ν
∑T

t=1
∂L
∂F |(Ft−1(x))

Friedman et al., Annals of Applied Statistics, 2000
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PASCAL 2006 Object Categorization Dataset
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Experimental Settings

RMSBoost is compared with: AdaBoost.ML, Kernel SVM,
Multi-Switch TSVM, SERBoost, RMBoost.

Base learners are tiny extremely randomized forests, each consisting
of 10 trees.

Boosting iterations set to be 10000.

Parameters are selected via 10-fold cross-validation.

Results of hierarchical k-means is averaged 10 times to estimate the
cluster priors.

For binary classification methods, we used a 1-vs-all strategy.

All results reported are average of 10 independent runs.

All boosting and RF methods are implemented in C++ and use
ATLAS subroutines.
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PASCAL 2006 Object Categorization Dataset
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Exponential Loss

Example

The exponential loss `(f (x)) = e−f (x), is a Fisher-consistent loss, its
estimated conditional probabilities can be written as

p̂(y = i |x) =
efi (x)∑K
j=1 efj (x)

, (11)

which is a symmetric multiple logistic transformation.

The empirical risk is

L(f(x),Xl) =
∑

(x,y)∈Xl

e−fy (x). (12)

Zou et al., Annals of Applied Statistics, 2008
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Cluster Priors

Cluster Prior

∀x ∈ Xu,∀i ∈ {1, · · · ,K} : pp(y = i |x) .

We use the Kullback-Leibler (KL) divergence to measure the deviation of
the model w.r.t. cluster prior

`c(f(x)) = D(pp‖p̂) = −H(pp) + H(pp, p̂). (13)

Using symmetric multiple logistic transformation as the probabilistic
estimates of the model

`c(f(x)) = −pT
p f(x) + log

K∑
j=1

efj (x). (14)
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