
Instructions for Feature Selection Lab: PASCAL

Bootcamp 2007

Amir Saffari
Institute for Computer Graphics and Vision

Graz University of Technology, Graz, Austria.

amir@ymer.org

Isabelle Guyon
Clopinet Consulting, 955 Creston road

Berkeley, CA 94708, USA.

isabelle@clopinet.com

July 1, 2007

1 Introduction

Welcome to the first practical session of the feature selection lab of PASCAL
Bootcamp 2007. In this lab, you will be introduced to the Spider and Clop
machine learning toolboxes. We will start with very simple problems and try to
warm up a bit towards more complicated problems which you will be working
later during the bootcamp.

2 Installation Guide

The programs used in this lab are mainly based on MATLAB, as a result you will
need to have a running MATLAB on your computer/laptop. If you happened
not to have one, do not worry, you will be provided with desktop computers with
MATLAB included. So now, if you do not have a MATLAB on your personal
computer, you can skip to the next section, otherwise, keep reading to get to
know what you should do to install necessary programs.

Please go to this address and download the CLOP package (93 MB):
http://clopinet.com/isabelle/Projects/NIPS2003/DataNcode.zip

Now decompress the DataNcode.zip into a directory of your choice, we will use
the path2CLOP to refer to the location where you extracted the DataNcode.zip. After
extraction, you should get a directory named DataNcode inside path2CLOP path.

If your operating system is a 32-bit Windows, then you can skip to the next part,
else if you are using Linux, then we need to compile a package here. The svc model

1

is originally based on a C code, so depending on your machines configuration, there
might be a need for compilation. We have provided pre-compiled versions for 32-bit
Windows and they usually run without problems. But for Linux, you need to compile
them. The source code for svc is located in
path2CLOP/DataNcode/Clop/challenge objects/packages/libsvm-mat-2.8-1.

Before proceeding, make sure you have GNU GCC and Make installed on your
machine. Please open a terminal and change to the above path. There are two different
Makefiles: Makefile orig is the one which was provided by the authors of the SVM
package, and Makefile amir is what I used on my machine to compile it. The only
difference in these two files is the name of the C compiler. In terminal, please run:

$ cd path2CLOP/DataNcode/Clop/challenge_objects/packages/libsvm-mat-2.8-1

$ make -f Makefile_amir

This will hopefully compile this package for you1.
Great, you have finished the installation. Let’s check if everything is working.

2.1 Testing the installation

Please start the MATLAB program, and change the working directory to path2CLOP/DataNcode,
and run the simpleMain.m script (replace the path2CLOP with yours):

>> cd path2CLOP/DataNcode

>> simpleMain

If everything is OK, you should get a few lines indicating the license for Spider and
CLOP packages, and a few messages showing that the program is loading the Arcene

dataset, and then finally a support vector machine classifier will be trained on this
dataset. If you get any error during these operations, please contact with us, we will
try to fix the problem.

3 Getting hands dirty!

Now that we made sure the Clop and Spider are working properly, it is time to start
doing some interesting experiments. Please start MATLAB, and change the working
directory to path2CLOP/DataNcode:

>> cd path2CLOP/DataNcode

Now we have to add the Clop and its subdirectories to MATLAB search path:

>> addpath(genpath(pwd))

Ok, let’s load a dataset which is generated from samples drawn from a combination
of two Gaussian distributions:

>> load demoData1

>> whos

Let’s look at the dataset and plot the training data:

1I was not able to get the svc running under 64-bit Linux and GCC, it seems that it needs
a few code tunings. If you could, please let me know.

2

>> demoData

>> demoData.train

>> figure

>> posClassIndex = demoData.train.Y > 0;

>> negClassIndex = demoData.train.Y < 0;

>> plot(demoData.train.X(posClassIndex , 1) , demoData.train.X(posClassIndex , 2) , ’.’)

>> hold on

>> plot(demoData.train.X(negClassIndex , 1) , demoData.train.X(negClassIndex , 2) , ’r.’)

>> hold off

Alright, let’s do it, bring the support vector machine on:

>> myModel = svc({ ’coef0=0’ , ’degree=1’ , ’gamma=0’ , ’shrinkage=1’ })

>> [trainOutput , myModel] = train(myModel , demoData.train)

>> BER = balanced_errate(trainOutput.X , trainOutput.Y)

>> EBAR = error_bar(BER , length(find(trainOutput.Y > 0)))

Let’s look at what happened:

>> figure

>> posClassIndex = trainOutput.X > 0;

>> negClassIndex = trainOutput.X < 0;

>> plot(demoData.train.X(posClassIndex , 1) , demoData.train.X(posClassIndex , 2) , ’.’)

>> hold on

>> plot(demoData.train.X(negClassIndex , 1) , demoData.train.X(negClassIndex , 2) , ’r.’)

>> hold off

>> title(’Training results’)

Well, I think we need to test it too:

>> testOutput = test(myModel , demoData.test);

>> BER = balanced_errate(testOutput.X , testOutput.Y)

>> EBAR = error_bar(BER , length(find(testOutput.Y > 0)))

>> figure

>> posClassIndex = testOutput.X > 0;

>> negClassIndex = testOutput.X < 0;

>> plot(demoData.test.X(posClassIndex , 1) , demoData.test.X(posClassIndex , 2) , ’.’)

>> hold on

>> plot(demoData.test.X(negClassIndex , 1) , demoData.test.X(negClassIndex , 2) , ’r.’)

>> hold off

>> title(’Test results’)

What will happen if I would use Naive Bayes: simple, change myModel to be a
naive, and do what came afterwards, but it is tedius, I know, so just open an m-file
and copy all those commands into it. Now we can just edit this file whenever we want
to experiment something new. Alright, I know you are lazy to do that, just open the
demo1.m file, and there you go.

3

