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Choosing your operating system
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Majority voting scheme

I Ask experts for their opinion and choose the option with
majority vote.

I Let’s say we have a set of M experts:
H = {f1, f2, . . . , fM}, fm(budget) ∈ {Linux , Windows}

I Assume Linux = +1, Windows = −1, then the majority
vote decision will be:
F (budget) = sign( 1

M
∑M

m=1 fm(budget))
I This is the main concept behind ensemble methods.
I Diversity is just more than great.
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Notations

I D = {(x1, t1), (x2, t2), . . . , (xN , tN)}
I xn ∈ Rd , tn ∈ {−1,+1}
I H = {f1(x), f2(x), . . . , fM(x)}
I ym = fm(x) ∈ {−1,+1}
I F (x) =

∑M
m=1 αmfm(x)

I αm ∈ R+,
∑M

m=1 αm = 1
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Why to use ensemble methods?

Better performance
Assume that: ∀j : p(ym 6= t) ≤ µ < 1/2, and the decisions of
different models are independent, then the chance of a wrong
decision by the ensemble, p(F 6= t) = 1− Pr(k ≤ M/2), where
Pr(k ≤ K ) is the cumulative distribution function of a binomial
distribution.
This upper bound is pretty much better than the original error
rate.
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Performance of ensemble of classifiers

For µ = 0.3 and M = 21, the chance of misclassification is around 0.026 (T. G. Diettrich 2000).
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Why to use ensemble methods?
Statistical reason

From: T. G. Diettrich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Vol. 1857,
pages: 1-15, 2000.
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Why to use ensemble methods?
Computational reason

From: T. G. Diettrich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Vol. 1857,
pages: 1-15, 2000.
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Why to use ensemble methods?
Representational reason

From: T. G. Diettrich, Ensemble Methods in Machine Learning, Lecture Notes in Computer Science, Vol. 1857,
pages: 1-15, 2000.
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Why to use ensemble methods?

I Computational efficiency We are looking for a set of weak
learners (classifiers, or hypotheses): p(y 6= t) < 1/2.

I Different classes of base models Choices could be: Trees
(stumps, small, large), Naive Bayes, k-Nearest Neighbors,
Neural Networks, Linear SVM, YOUR-MAGICAL-MODEL,
...
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How to find the base models?

I Train a diverse set of models on the same datasets.
I Train a set of models from a specific class of learners by

using diversity in the datasets, parameters, or initial
conditions.

I Cross-validated committees
I Bagging
I Boosting
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Bagging

I Create subsets of the training samples, called bootstrap
replicates, each containing examples drawn randomly with
replacement from the original training dataset, and train
learning algorithms over them.

I The method is called bootstrap aggregation.
I Originally developed to reduce the variance of the learning

algorithms.

L. Breiman, Bagging Predictors, Machine Learning, Vol. 24, pages: 123-140, 1996.
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Stagewise additive modeling

F (x) =
∑M

m=1 αmfm(x)
General Forward Stagewise Additive Modeling

I Set F (0)(x) = 0
I for m = 1 to M, do
I {fm(x), αm} = argmin

f ,α

∑N
n=1 L(tn, F (m−1)(xn) + αf (xn))

I F (m)(x) = F (m−1)(x) + αmfm(x)

J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a Statistical View of Boosting, Annals of

Statistics, Vol. 28, pages: 337-407, 2000.
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AdaBoost

F (x) =
∑M

m=1 αmfm(x)
I(t , y) = −t .y
Discrete AdaBoost

I Set W = {w1, w2, . . . , wN},∀n : wn = 1/N
I for m = 1 to M, do
I fm(x) = argmin

f

∑N
n=1 wn(tn − f (xn))

2

I em =
∑N

n=1 wnI(tn, fm(xn))

I αm = log 1−em
em

I wn ← wn exp(αmI(tn, fm(xn)))

I wn ←
∑N

n=1 wn

Y. Freund, R. Schapire, Experiments with a New Boosting Algorithm, Proceedings of ICML, pages: 148-156, 1997.
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Tracking visual objects

H. Grabner, M. Grabner, H. Bischof, Real-Time Tracking via On-line Boosting, BMVC, 2006.
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