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Introductior







e ODbject Categorlzatl Invariance to
Interclass varlatlonsOK
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« Invariance, Generalization. 7
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w Motivation (cont.)

» Intermediate-level: Visually similar.
e Decomposing nto
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— Part Properties ‘\

The parts of one object correspond to parts in
other objects belonging to the same class.

Corresponding parts are similar; more so than ~ =
objects belonging to the same class are similar.

Detectors can be devised that can detect the part |
with some degree of Success.

4, A part has geometricalproperties, such as a
spatial position, often.a scale, an orientation, a
spatial extent, a velocity.
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Part Properties (cont.; \
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Variability ¢ ueto Pose Changes

Variability due to Backg\éund Clutter
« Variability due to Lighting
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whether an instance of an object class i LR
present or absent in the image. > & A

e Theonly supervision is that an imagehas or ¢
doesn‘t has an object, without any
segmentation and localization: weakly

supervised.




Decomposition into Parts\

e Transform entire iImage I
parts. N

e Some detected parts might correspond to an
instance of target object (foreground);
others are from background or false ~
detection (background). \

* Assume that there are T different type of
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Hypothesis Constructl N

e Assume object Is compOseﬁ'xf‘F parts:
F>T

* Hypothesis, h, 1s a vector of length F,
indicating part indices for foreground
object: h, = J shows that point X;; is a
point of foreground

N
e If an object part is not contained in -
foreground the corresponding point in h will \

be zero. / 7




e From maX| 1

calculating th‘- atio: N

p(Object| X°) ——  p(X®|Object) p(Object)

" p(NoObject| X°)  p(X° |""N‘60bject)/p.(-|\|o Object) &
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Learnlng

Eliminate all small cluﬁ?

Compute centers of clusters as part défector
template. A

Apply feature selection method to reduce the
number of parts into acceptable range.






Summary of Basics\

B \
The model explicitly accounts for shape

variations.

The randomness in presence and absence Ty %
features due to false detections or occlusion ¢
IS approached in a-principled manner.

o |t explicitly accounts for image clutter.

e The model presents‘unsupervised automatic
way to detect and learn feature extractors.







n(No Object \ X\ﬁi\)

©pexs, A|0b1e\‘f)p(0bjeco
p(X S, A | NoObject) p(N%)bject)

L p(X,S, A|H)p(ObJect)
p(X,S,Al6, )p(NoObJect) »
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= PAIXS h6)p(X|

heH

Appearance = Shape N

4+ hisa hypothesis.




Feature Detection |
¢ e detector of

e Features are found-usine
Kadir & Brady.

e In this method first a histogram of '
intensities, P(1), in a circular region of
radius s (scale) around each pixel Is made,
then the local maxima.of entropy of this \
hlstogram H(s), |s con5|dered as feature
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e The saliency (importance) of é‘éch feature is

* TheN regions with highest saliency over

e The saliency measure«s designed to be

Feature Detection (coni)

computed as Hd— after appropriate
normalization fOF scale

Image provide the-features. Each feature has '_
Information about the position and scale. ¥

Invariant due to scale.
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Feature Representation ‘
e Each region is cropped?l#?ﬂ%@‘éa‘hd IS

rescaled to a small size.

 In the learning stage, a PCA Is applled to a1l v
collected patches from all images. Then the &
first k principal components are selected |

and represented as appearance, A.
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\ |
Problems. '\ ‘

e The joint nature of th%aeiresults
In an exponential explosion-in v
computational cost, limiting the number of A
parts and regions per image that can-be
handled. For N-feature detections, and P
model parts the complexity-for both
learning and recognltlon ISO(NP).
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Problems (cont.)

Only one type of inte?@%ﬂ?ﬁr (@

region operator) was used, making the < &
model very sensitive to the nature of the ™
class. =

e The model has many parameters resulting ' 
In overfitting unless a large number of N
training Images (typlcally 200+) are used.
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Solutions
i\
* In the new model, both in learning and
recognition has a lower complexity than the:
constellation model. This enables both the =
number of parts and the number of detected £,

features to be increased substantially.

 |tIs heterogeneous and Is able to make the
optimum selection of feature types (here
from a pool of three, including curves).




Heterogeneous Star I\/Iodel

\
A Heterogeneous Star M@del (‘HSM) which

maintains the simple training aspect ofithe
constellation model, and also, likethe =
constellation model, gives a localization for £,
the recognized object Is proposed. The |
model 1s translation and scale invariant both -
In learning and In regognition.




locations X , scales S and descriptors D.

«Joint density: v A
~/
p(X,D,S,h|0) = p(D|h,O)p(X]S.h,0)p(S|h,0)p(h|0)

Appearancé:' Rel. Locatlons Rel. Scale Other
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Star Model (cont) \

e In Constellation model, the appearance
models for each part IS assumed o)
Independent but the relative location of the ¥
model parts is represented by a joint
Gaussian density-While this provides the
most thorough description; 1itimakes the
location of all parts dependent on one

~
another
- A N’\







» Asa result dependecies between parts in
_~Oensity function Is redueed conS|deraTj|Iy ®
SO computations with much more parts and g
features are possible.
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Star Model (cont)

e In practical terms,.one c hachieve
translation invariance by subtracting the &
location of the landmark part from the non- - .
landmark ones. Scale invariance Is achleved
by dividing the location of the non-
landmark parts by the locally-measured \
scale of the Iandmark part.
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= Limitations of Starl\/l_o‘ el
. Occlusm\off\land a |
handled. A
e Assumption: Landma[k part IS always
visible. \a—s

« With large number of features, N, the’
chance of landmark detection m_creases
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= Feature Detectors

e The models can utilize a combination of
different features detectors, the optimal,
selection being made automatically.

o Kadir & Brady, multi-scale Harris and
Curves. |

s Kadir & Brady favors«circular-regions;
multi-scale Harris prefers interest points,
and curves locate the outline of the object.
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» Each feature operator gi

»_Its gradient is computed.and then

* Then PCA is applied.and first d principal

Feature Repres_ent_ati

and scale of the region. Each region is . v
cropped from Iimage, and rescaled to a k*b >
patch. —

normalized.

component Is chosen.

v . U



L

wm Feature Representatlon( nt)

nts are made for
each gradient-patch: its unnormalized I
energy and the reconstruction error between A
the point in the PCA basis and the orlgmal
gradient-patch.

» Eachregion is thus represented by a vector \
of length d + 2.

« Two additional measure
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Learning ‘

 The EM algorithm.is ummﬁg of

model parameters.

 Different combination of feature operatory >
are tested and chosen using a validation set. £

o Kadir & Brady (KB); multi-Scale Harris
(MSH); Curves (C); KB + MSH; KB + C; \
MSH + C; KB + MSH'+ C.
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Recognition Hfi

e Recognition using features. _

 Exhaustive recognition without features: .« ¢
this method can be used only in recognition =
and replaces feature detection part with
searching the appearance densities
exhaustively over the entire image (and at  » A
different scales). At each location and scale, \\!
the likelihood ratiofor each part Is

calculated. |
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Recognition (cont.) '

 In more detail, each PCA basis vector is
convolved with'the image (employing -
appropriate normalizations), so projecting ~ *
every patch in the image into the PCA basis. |

* For a given model, the likelihood ratio of
each part's appearance density to the
packground density isithen computed at
every location, giving- likelihood-ratio
map over the entire image for that part.
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Experimental Resultsi

The comparison of HSM to thE‘fuIIy
connected model.

The effect of I mcreasmg the number of parts -
and detections/image. ~

The difference between feature based and
exhaustive recognition.

e Datasets: Airplanes, Bottles, Camels, Cars
(rear), Faces, Guitars, Houses, Leopards,

Motorbikes. |
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Dataset

Airplanes 800 “

Bottles 247
Camels 350

Cars (Rear) 900
Faces 435
 Guitars 800
Houses 800
Leopards 200
Motorbikes 900




umbe

== Motorbikes =%= Faces Holsas

Matorbikes =» Faces Houses
== Airplanas Leopards = Guitars ==
== Cars Rear ww= Camels =m. Boffles == Aliplanes Leopards we Guitars

=#= (ars Rear mE
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Results: Recall-Precision
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