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Introduction
• What is Object?
• What is Object Recognition?



Introduction (cont.)
• Variations: such as scaling, translation, 

rotation, deformation, noise, occlusion, 
background.

• Object recognition system must be
Invariant to these transformations.



Introduction (cont.)
• Classes of Objects are collection of objects

that are similar (also known as Category).
• Object Categorization: Invariance to 

interclass variations.
• Invariance, Generalization.



Motivation
• What makes objects within a class similar?
• Abstract higher-level definitions.



Motivation (cont.)
• Intermediate-level: Visually similar.
• Decomposing objects into parts.



Part Properties
1. The parts of one object correspond to parts in 

other objects belonging to the same class.
2. Corresponding parts are similar; more so than 

objects belonging to the same class are similar.
3. Detectors can be devised that can detect the part 

with some degree of success.
4. A part has geometrical properties, such as a 

spatial position, often a scale, an orientation, a 
spatial extent, a velocity.



Part Properties (cont.)



Part Properties (cont.)



Signal Variability
• Variability due to Absence of Features
• Variability due to Deformation
• Variability due to Pose Changes
• Variability due to Background Clutter
• Variability due to Lighting



Problem Formulation
• Problem: Given a new image decide

whether an instance of an object class is
present or absent in the image.

• The only supervision is that an image has or
doesn‘t has an object, without any
segmentation and localization: weakly
supervised.



Decomposition into Parts
• Transform entire image into a collection of 

parts.
• Some detected parts might correspond to an 

instance of target object (foreground), 
others are from background or false
detection (background).

• Assume that there are T different type of 
parts.



Decomposition into Parts (cont.)



Decomposition into Parts (cont.)
• The position for all parts:
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Hypothesis Construction
• Assume object is composed of F parts:

• Hypothesis, h, is a vector of length F,
indicating part indices for foreground
object:            shows that point      is a 
point of foreground.

• If an object part is not contained in 
foreground the corresponding point in h will 
be zero. 

TF ≥

jhi = ijx



Model Description
• From maximum a posterior probability

(MAP), classification can be viewed as 
calculating the ratio:
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Model Description (cont.)
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Learning
• Part detectors:

1. Apply interest point detectors to image.
2. Do an unsupervised clustering over all parts.
3. Eliminate all small clusters.
4. Compute centers of clusters as part detector

template.
5. Apply feature selection method to reduce the

number of parts into acceptable range.



Learning (cont.)
• Learning of model parameters: expectation

maximization (EM) method.
• The EM algorithm is designed to estimate

model parameters according to some
observations, but in situations where some
necessary data is missing.



Summary of Basics
• The model explicitly accounts for shape

variations.
• The randomness in presence and absence of 

features due to false detections or occlusion
is approached in a principled manner.

• It explicitly accounts for image clutter.
• The model presents unsupervised automatic

way to detect and learn feature extractors.



Scale-Invariant Model
• In feature extraction step, for any given

image, extract N interesting features with
locations X, scales S, and appearance A.

• Assume that object has P parts.



Decision
• Bayesian decision:
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Likelihood Factorization

• h is a hypothesis.
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Feature Detection
• Features are found using the detector of 

Kadir & Brady.
• In this method first a histogram of 

intensities, P(I), in a circular region of 
radius s (scale) around each pixel is made, 
then the local maxima of entropy of this
histogram, H(s), is considered as feature
scale.



Feature Detection (cont.)
• The saliency (importance) of each feature is

computed as          , after appropriate
normalization for scale.

• The N regions with highest saliency over
image provide the features. Each feature has 
information about the position and scale.

• The saliency measure is designed to be
invariant due to scale.

ds
dPH



Feature Detection (cont.)



Feature Representation
• Each region is cropped from image and is

rescaled to a small size.
• In the learning stage, a PCA is applied to all 

collected patches from all images. Then the
first k principal components are selected
and represented as appearance, A.



Experimental Results



Experimental Results (cont.)



Problems
• The joint nature of the shape model results 

in an exponential explosion in 
computational cost, limiting the number of 
parts and regions per image that can be 
handled. For N feature detections, and P
model parts the complexity for both 
learning and recognition is           .)( PNO



Problems (cont.)
• Only one type of interest operator (a 

region operator) was used, making the 
model very sensitive to the nature of the 
class.

• The model has many parameters resulting 
in overfitting unless a large number of 
training images (typically 200+) are used.



Solutions
• In the new model, both in learning and 

recognition has a lower complexity than the 
constellation model. This enables both the 
number of parts and the number of detected 
features to be increased substantially.

• It is heterogeneous and is able to make the 
optimum selection of feature types (here 
from a pool of three, including curves).



Heterogeneous Star Model
• A Heterogeneous Star Model (HSM) which 

maintains the simple training aspect of the 
constellation model, and also, like the 
constellation model, gives a localization for 
the recognized object is proposed. The 
model is translation and scale invariant both 
in learning and in recognition.



Star Model
• Assume model has P parts and parameters

.
• From each image, extarct N features with

locations , scales and descriptors .
• Joint density:
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Star Model (cont.)
• In Constellation model, the appearance 

models for each part is assumed 
independent but the relative location of the 
model parts is represented by a joint 
Gaussian density. While this provides the 
most thorough description, it makes the 
location of all parts dependent on one 
another.



Star Model (cont.)
• In this model a simplified configuration model in 

which the location of the model part is conditioned 
on the location of a landmark part is proposed. 
Under this model the non-landmark parts are 
independent of one another given the landmark.



Star Model (cont.)
• Relative location:

• As a result dependecies between parts in 
density function is reduced considerabily, 
so computations with much more parts and 
features are possible.
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Star Model (cont.)
• In practical terms, one can achieve 

translation invariance by subtracting the 
location of the landmark part from the non-
landmark ones. Scale invariance is achieved 
by dividing the location of the non-
landmark parts by the locally measured 
scale of the landmark part.



Limitations of Star Model
• Occlusion of landmark part can not be

handled.
• Assumption: Landmark part is always

visible.
• With large number of features, N, the

chance of landmark detection increases.



Feature Detectors
• The models can utilize a combination of 

different features detectors, the optimal 
selection being made automatically.

• Kadir & Brady, multi-scale Harris and 
Curves.

• Kadir & Brady favors circular regions; 
multi-scale Harris prefers interest points, 
and curves locate the outline of the object.



Feature Detectors (cont.)



Feature Representation
• Each feature operator gives both location 

and scale of the region. Each region is 
cropped from image, and rescaled to a k*k
patch.

• Its gradient is computed and then
normalized.

• Then PCA is applied and first d principal
component is chosen.



Feature Representation (cont.)
• Two additional measurements are made for 

each gradient-patch: its unnormalized
energy and the reconstruction error between 
the point in the PCA basis and the original 
gradient-patch.

• Each region is thus represented by a vector 
of length d + 2.



Learning
• The EM algorithm is used for learning of 

model parameters.
• Different combination of feature operators

are tested and chosen using a validation set.
• Kadir & Brady (KB); multi-Scale Harris 

(MSH); Curves (C); KB + MSH; KB + C; 
MSH + C; KB + MSH + C.



Recognition
• Recognition using features.
• Exhaustive recognition without features: 

this method can be used only in recognition
and replaces feature detection part with
searching the appearance densities 
exhaustively over the entire image (and at 
different scales). At each location and scale,   
the likelihood ratio for each part is 
calculated.



Recognition (cont.)
• In more detail, each PCA basis vector is 

convolved with the image (employing 
appropriate normalizations), so projecting 
every patch in the image into the PCA basis.

• For a given model, the likelihood ratio of 
each part's appearance density to the 
background density is then computed at 
every location, giving a likelihood-ratio 
map over the entire image for that part.



Recognition (cont.)



Experimental Results
• The comparison of HSM to the fully 

connected model.
• The effect of increasing the number of parts 

and detections/image.
• The difference between feature-based and 

exhaustive recognition.
• Datasets: Airplanes, Bottles, Camels, Cars 

(rear), Faces, Guitars, Houses, Leopards, 
Motorbikes.



HSM vs. Constellation
• Total size Full model Star model
• Dataset of dataset test error (%) test error (%)
• Airplanes 800 6.4 6.8
• Bottles 247 23.6 27.5
• Camels 350 23.0 25.7
• Cars (Rear) 900 15.8 12.3
• Faces 435 9.7 11.9
• Guitars 800 7.6 8.3
• Houses 800 19.0 21.1
• Leopards 200 12.0 15.0
• Motorbikes 900 2.7 4.0



Number of parts



Exhaustive Search
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