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Abstract

Large language models have shown impres-
sive abilities to reason over input text, however,
they are prone to hallucinations. On the other
hand, end-to-end knowledge graph question
answering (KGQA) models output responses
grounded in facts, but they still struggle with
complex reasoning, such as comparison or or-
dinal questions. In this paper, we propose a
new method for complex question answering
where we combine a knowledge graph retriever
based on an end-to-end KGQA model with a
language model that reasons over the retrieved
facts to return an answer. We observe that
augmenting language model prompts with re-
trieved KG facts improves performance over
using a language model alone by an average
of 83%. In particular, we see improvements
on complex questions requiring count, intersec-
tion, or multi-hop reasoning operations.

1 Introduction

Large language models (LMs) have shown great
promise in a variety of NLP tasks, including
question-answering (QA) (Zhang et al., 2022; Sanh
et al., 2022; Wei et al., 2022a). As language models
scale, they achieve impressive results on standard
QA benchmarks, such as SQuAD (Raffel et al.,
2020), and can answer questions either few-shot or
zero-shot using only knowledge stored within the
model parameters (Roberts et al., 2020). Language
models have also been shown to solve complex rea-
soning tasks by outputting step-by-step instructions
from question to answer (Creswell et al., 2022; Wei
et al., 2022b). Despite these successes, language
models are still prone to hallucinations and can re-
turn answers that are incorrect, out-of-date, and not
grounded in verified knowledge sources, making
them an unsafe choice for a factual question an-
swering service. Additionally, step-by-step reason-
ing can be computationally expensive as it requires
multiple calls to a language model.

Alternatively, knowledge graph-based question
answering (KGQA) models (Chakraborty et al.,
2019; Fu et al., 2020) are trained to traverse knowl-
edge graph (KG) facts to return answers to ques-
tions. These models are faithful and grounded to
facts stored in a KG. However KGQA models are
often limited in the types of reasoning that they can
perform. Most end-to-end KGQA models can per-
form relation following for single or multiple hops
(Cohen et al., 2020), and some models have been
trained for set intersection (Sen et al., 2021), union,
or difference (Sun et al., 2020), however expanding
to general reasoning capabilities remains an open
challenge. KGQA models are also restricted to us-
ing facts stored in a knowledge graph and can not
leverage common world knowledge.

In this paper, we propose a novel method for
complex question answering using a KGQA model
retriever with a language model reasoner. Our ap-
proach harnesses both the ability to traverse over
verified facts with a KGQA model, and the ability
to reason over text with an LM.

For our KGQA retriever, we train an end-to-
end KGQA model based on ReifKB (Cohen et al.,
2020) and the Rigel family of models (Saffari et al.,
2021; Sen et al., 2021). We use this model to re-
turn a weighted set of facts from the knowledge
graph that could be useful for answering a given
question. We then prompt an LM with the question
and the top-k facts retrieved, in a zero-shot setting,
and the language model returns a natural language
answer. In our experiments over four QA datasets,
we show that our approach can outperform using
an LM alone by an average of 83%.

2 Related Works

Recent work on using language models for rea-
soning tasks include Kojima et al. (2023), where
the authors prompt the models to output the steps
to the answer in addition to the final result. Other
methods have also tried to solve questions by break-



Figure 1: Architecture for our model setup. Question
entities are shown as blue nodes in the knowledge graph
diagrams. See section 3.1 for details.

ing them down into intermediate steps: Wei et al.
(2022b) prompts the language model with similar
examples where an answer is formed step-wise be-
fore providing the requested answer. Creswell et al.
(2022) fine-tune several models with the task of
choosing relevant knowledge until a satisfactory
answer is reached. Although these methods im-
prove language model performance, it can be costly
to fine-tune a large language model or to pass an
input through a language model multiple times, es-
pecially at runtime. In this work, we instead build
a lighter weight retriever model to collect relevant
facts followed by a single call to a language model.

Different data sources have also been used for re-
trieval: Lazaridou et al. (2022) uses Google search.
Kang et al. (2022) also retrieves facts from a knowl-
edge graph but requires fine-tuning a language
model, which can be expensive for the larger mod-
els. Recently, Baek et al. (2023) used a similarity
metric between KG facts and questions to retrieve
relevant facts to add to the prompt of a language
model. However Baek et al. (2023) found that sim-
ilarity alone is not always enough to find relevant
facts for complex question. In this work we present
a more sophisticated model for identifying relevant
facts with a KGQA model.

3 Method

We propose a new method for question answer-
ing using a KGQA model to retrieve facts from a
knowledge graph, and a language model to reason
over the question and facts to return an answer.

3.1 Model description
As shown in Figure 1, our model has three main
components:

1. A sequence-to-sequence KGQA model
(which we refer to as RIGEL based on Saffari
et al. (2021); Sen et al. (2021)) for predicting
a distribution over which relations to follow
in a knowledge graph.

2. A differentiable knowledge graph (DKG),
where the KG is stored in three linear maps
from left-entities, relations, and right-entities
to triples respectively, represented as sparse
binary matrices (Cohen et al., 2020).

3. A language model for interpreting the ques-
tions and reasoning over facts provided from
the KG by the two previous components.

We do not yet integrate entity resolution, so ques-
tion entities are provided from the datasets.

There are three steps to running the model in
inference. First, Rigel is used to estimate a distribu-
tion over relations for each hop using a sequence-
to-sequence architecture. We initialize the encoder
using RoBERTa-base (Liu et al., 2019). The de-
coder predicts a distribution over relations in the
knowledge graph. This decoding step is performed
for up to M hops (in our experiments, M = 2).

Second, the question entities and the distribution
over relation are used to extract weighted triples
from the knowledge graph. We represent the ques-
tion entities as a one-hot vector in entity-space and
map this to a vector of triples using the left-entity to
triple sparse matrix in the DKG. Similarly, for rela-
tions, we use the vector over relations predicted by
the Rigel model and map this to a vector of triples
using the relation to triple matrix in the DKG. Fi-
nally we take the Hadamard (element-wise) prod-
uct to extract a weighted vector of triples. For the
second hop, we map the triple vector back to en-
tities using the right-entity to triple matrix in the
DKG and repeat the process above.

We retain only the top-k triples for each hop
(in our experiments k = 10) and convert them into
natural language using the names of the entities
and relations as stored within the KG. We also in-
clude inverse triples within our DKG where the re-
lations are prefixed with “<inv>-” when converted
to natural language, e.g. “(Paris, <inv>-capital-of,
France)”. We also include literal values for num-
bers, strings and dates in our DKG as right entities.

Finally, we run inference in a zero-shot setting
with a pretrained language model. We compose
a prompt following the template: “Given the fol-
lowing context: "{context}" Answer the question:



{question}. Answer:” where the context is the set
of filtered triples formatted as “(left entity, relation,
right entity), . . . , (left entity, relation, right entity)”.
We input this prompt into a language model to out-
put an answer.

3.2 Training
Of the three components outlined in section 3.1,
we only train the Rigel KGQA model. The DKG
is instantiated from a static dump of the Wikidata
(Vrandečić and Krötzsch, 2014) knowledge graph,
and the language models in our experiments are
not fine-tuned.

Rigel is trained using the train and dev sets of
KGQA datasets annotated with natural language
questions, question entities, and answer entities. As
described in section 3.1 we estimate a distribution
over entities for each hop. During training, we
also jointly learn an attention mechanism which is
conditioned on the question embedding to predict
how much to weigh answer entities returned for
each hop. We use a binary cross-entropy objective
to allow for multiple answer entities. For more
information on training the Rigel model see Sen
et al. (2021). We leave end-to-end training of both
the KGQA model and the LM to future work.

4 Experimental Setup

4.1 Datasets
We use four KGQA datasets in our experiments
with Wikidata as the knowledge graph. For datasets
built using FreeBase, we link entities to Wikidata
using the FreeBase ID Wikidata property. The train
/ dev sets for each dataset are used to train the Rigel
model, and all results are reported on the test sets.

• WebQuestions (Berant et al., 2013) is an
English question-answering dataset of 4,737
questions (2,792 train, 306 dev, 1,639 test)
originally built on FreeBase. WebQuestions
includes questions requiring multiple hops
and set intersections.

• ComplexWebQuestions (Talmor and Berant,
2018) is an extended version of WebQuestions
with 34,689 questions (27,649 train, 3,509
dev: since the test set is not public, we use
the dev set for testing) in English requiring
complex operations, such as multiple hops
and temporal constraints.

• Mintaka (Sen et al., 2022) is a complex ques-
tion answering dataset of 20,000 questions

(14,000 train, 2,000 dev, 4,000 test) linked to
Wikidata and using complex operations such
as comparisons and set operations. We use the
English subset.

• LC-QuAD is a dataset of 30,000 synthetically
generated English questions and SPARQL
parses. We use the subset with SPARQL
parses that return a valid answer from Wiki-
data (20,438 train, 5,230 test). These ques-
tions include complex operations such as
multi-hop and count.

4.2 Language Models

We evaluate our method using language models
from four families of models:

• Flan-T5 (Chung et al., 2022) models are an
extension of T5 encoder-decoder models that
have been instruction tuned on a large set
of instructions that were automatically gen-
erated using existing datasets and templates.
We use the Flan-T5 Small (80M parameters),
XL (3B), and XXL (11B) models.

• T0 (Sanh et al., 2022) models are encoder-
decoder models that are trained on a variety
of prompts, which are automatically built from
supervised datasets using templates. We use
the T0 (11B) and T0 3B (3B) models.

• OPT (Zhang et al., 2022) models are large,
open-source, decoder-only models that have
been trained to roughly match the perfor-
mance of GPT-3 models. We use the 13B
parameter version of OPT.

• AlexaTM (Soltan et al., 2022) is a 20 billion
parameter encoder-decoder model trained on
publicly available data in multiple languages.

4.3 Training Specifications

We train each of our Rigel models on a single
NVIDIA Tesla V100 GPU for 40,000 steps. We
run inference over our language models using four
Tesla V100 GPUs and distribute across GPUs using
Hugging Face Accelerate (Gugger et al., 2022).

4.4 Evaluation metric

Our datasets provide answer entities (e.g., Wiki-
data Q-codes). To evaluate the performance of the
LM’s natural language output, we test if any of the
provided answer entity names or their aliases as



Flan-T5 T0

Dataset Experiment Rigel S XL XXL 3B 11B OPT ATM

WebQ No Knowledge – 16.29 40.15 45.15 29.10 34.05 26.85 38.56
Random Facts – 21.90 28.49 39.96 28.07 36.30 48.02 41.98
Rigel Facts 48.9 45.52 55.58 59.79 53.33 55.64 57.60 55.40

% improvement – 179% 38% 32% 83% 63% 115% 44%

CWQ No Knowledge – 9.63 28.79 31.00 20.26 24.98 18.19 27.20
Random Facts – 14.69 23.96 31.15 20.86 26.85 28.13 29.41
Rigel Facts 29.21 25.55 36.09 40.38 32.54 36.35 32.54 35.72

% improvement – 165% 25% 30% 61% 46% 79% 31%

Mintaka No Knowledge – 12.65 24.63 30.15 21.13 30.08 38.53 28.48
Random Facts – 12.20 20.98 33.63 21.33 30.40 42.20 33.00
Rigel Facts 21.7 20.58 33.50 37.90 29.28 33.35 40.03 35.60

% improvement – 63% 36% 26% 39% 11% 4% 25%

LC-QuAD No Knowledge – 3.90 8.15 3.82 8.32 9.31 8.75 11.79
Random Facts – 8.40 8.91 11.24 9.71 10.65 12.65 12.81
Rigel Facts 27.86 15.65 22.82 9.41 20.54 22.32 20.93 22.30

% improvement – 301% 180% 146% 147% 140% 139% 89%

Table 1: Results by language model and dataset over two baselines (No Knowledge and Random Facts) and our
proposed method, Rigel Facts. % improvement shows the percentage improvement over No Knowledge to Rigel
Facts. Rigel shows the baseline of using Rigel alone with no language model.

stored in Wikidata exist within the LM output. We
also lower case text in the prediction and remove
punctuation, articles, and extra white space.

5 Results

We evaluate our method on four complex question-
answering datasets using seven language models.
We compare against two baselines.

• No Knowledge: we provide the question with
no additional context. The prompt is “Ques-
tion: {question} Answer:”.

• Random Facts: we provide k random facts (k
= 10) sampled uniformly over all facts reach-
able in one hop from the question entities.

The results are reported in Table 1, with the %
improvement showing the percentage of improve-
ment from the No Knowledge baseline to our pro-
posed Rigel Facts method. We also report scores
for the Rigel model alone in the Rigel column.

These results show that in almost all cases, a lan-
guage model using facts retrieved from our Rigel
model outperforms No Knowledge and Random

Facts. For smaller models such as Flan-T5, using
Rigel facts improves performance by up to 300%.
Larger models, such as AlexaTM, start with higher
baselines using no knowledge, but still see an aver-
age of 47% improvement across datasets. Excep-
tions are OPT on Mintaka and Flan-T5 XXL on
LC-QuAD, where random facts outperform Rigel.
We observe that in many of the questions where
augmenting with random facts performs better than
Rigel facts, neither provide useful information. In-
terestingly, however, random facts still encourage
the LM to output the correct answer.

The No Knowledge results show that models can
answer questions without additional facts. Larger
models with no facts can even outperform smaller
models with Rigel facts, for example, AlexaTM vs.
Flan-T5 on Mintaka (28.48 vs. 20.58). Neverthe-
less, it is promising to see smaller models become
more competitive with the help of a retriever.

The use of random facts shows mixed results.
Random facts rarely outperform Rigel, but com-
pared to the No Knowledge baseline, random facts
can sometimes help, as seen across models on Com-
plexWebQuestions and LC-QuAD. In other cases,



Flan-T5 T0

Question Type Experiment S XL XXL 3B 11B OPT ATM Average

Comparative No Facts 48.50 63.00 64.00 49.25 59.75 58.50 57.25 56.75
Random Facts 36.00 61.25 62.50 44.50 57.75 60.00 63.00 55.00
Rigel Facts 42.75 64.25 65.50 42.00 55.50 54.75 60.00 55.12

Count No Facts 16.75 26.25 33.00 21.25 25.00 25.00 40.75 27.56
Random Facts 17.25 17.75 28.50 27.25 28.75 51.00 43.50 30.57
Rigel Facts 23.75 27.25 31.25 40.75 32.00 49.00 48.75 36.47

Difference No Facts 4.25 16.75 19.50 17.00 21.00 20.00 28.25 19.28
Random Facts 6.75 11.75 20.50 11.25 15.50 29.00 21.75 16.64
Rigel Facts 15.50 17.50 24.00 14.25 17.00 28.75 27.25 20.44

Generic No Facts 2.12 16.50 24.25 18.12 28.75 48.38 37.50 27.12
Random Facts 11.62 20.50 35.75 19.62 30.88 50.00 43.62 30.29
Rigel Facts 20.50 34.25 41.12 30.88 36.75 47.12 45.50 37.61

Intersection No Facts 1.75 20.00 28.50 22.50 35.25 54.00 42.50 31.47
Random Facts 8.50 22.50 37.00 18.00 31.25 51.00 40.50 29.82
Rigel Facts 16.00 40.25 44.75 35.00 41.00 49.50 45.75 39.81

Multi-hop No Facts 3.00 7.25 12.75 8.25 13.25 20.00 13.25 12.44
Random Facts 2.75 9.50 18.25 6.50 14.25 24.00 15.75 13.00
Rigel Facts 13.50 22.25 27.75 20.50 21.25 25.75 21.00 22.69

Ordinal No Facts 1.50 9.50 16.50 10.00 15.50 27.75 20.25 15.44
Random Facts 6.75 9.50 17.75 9.50 18.00 29.75 20.75 16.00
Rigel Facts 12.00 16.50 23.75 17.25 18.00 24.25 24.25 19.84

Superlative No Facts 1.25 11.75 16.00 16.00 19.25 28.75 21.50 17.12
Random Facts 6.00 12.00 21.75 12.25 17.50 28.25 23.75 17.36
Rigel Facts 10.50 18.75 21.75 16.75 14.00 25.00 24.00 19.34

Yes/No No Facts 45.25 59.00 62.75 49.00 63.25 54.00 37.00 53.16
Random Facts 14.75 24.50 58.25 44.50 60.50 49.25 51.25 43.29
Rigel Facts 30.75 59.75 58.50 44.50 62.50 49.25 51.25 52.12

Average No Facts 13.82 25.56 30.81 23.49 31.22 37.38 33.14 28.93
Random Facts 12.26 21.03 33.36 21.49 30.49 41.36 35.99 28.00
Rigel Facts 20.58 33.42 37.60 29.10 33.11 39.26 38.64 33.72

Table 2: A breakdown of results by the different complexity types in the Mintaka dataset

random facts can hurt performance, as seen in Flan-
T5 XL on WebQuestions (from 40.15 to 28.49)
and Mintaka (from 24.63 to 20.98). This can be
attributed to random facts adding in distractors that
some models are more susceptible to. For exam-
ple, given the QA pair “Q: Where does Princess
Leia live? A: Alderaan”, if the random facts in-
clude “Leia Organa place of birth Polis Massa”,
the model can incorrectly answer Polis Massa.

We also show results in Table 2 as a breakdown
of performance by complexity type on the Mintaka

dataset. On average, we see that Rigel facts help
across complexity types. The highest gains are
in Count, Intersection, and Multi-hop questions.
These are also the areas that a model like Rigel,
which traverses a knowledge graph by following
relations, is best suited for. Finding facts for com-
paratives or yes/no questions are less reliable since
the training signal can be weak and there can be
multiple paths that spuriously lead to the correct
answer. For example, to answer Who is older, The
Weeknd or Drake?, there are several ways to get to



Question
How many countries were in the Central Powers alliance in World War I?

Random Facts Rigel Facts
· Central Powers has part Austria-Hungary · Central Powers has part Ottoman Empire
· Central Powers Commons category Central Powers · Central Powers has part Kingdom of Bulgaria
· Central Powers participant in World War I · Central Powers has part German Empire
· Central Powers instance of military alliance · Central Powers has part Austria-Hungary

Predictions Model No Knowledge Random Facts Rigel Facts
Flan-T5 XXL 6 ✗ 2 ✗ 4 ✓

Question
Where did the author of Pet Sematary go to college?

Random Facts Rigel Facts
· Pet Sematary author Stephen King · Stephen King education Lisbon High School
· Pet Sematary follows Christine · Stephen King education University of Maine
· Pet Sematary language of work or name English · Pet Sematary author Stephen King
· Pet Sematary publisher Doubleday · Pet Sematary notable work Stephen King

Predictions Model No Knowledge Random Facts Rigel Facts
T0 University of Michigan ✗ Dartmouth College ✗ University of Maine ✓

Question
What was the first book in the Lord of the Ring’s series?

Random Facts Rigel Facts
· Lord of the Rings characters Gandalf · Fellowship of the Ring follows The Hobbit
· Lord of the Rings characters Elrond · Two Towers follows Fellowship of the Ring
· Lord of the Rings translator Maria Skibniewska · Return of the King follows Two Towers
· Lord of the Rings nominated for Prometheus Award · Appendices follows Return of the King

Predictions Model No Knowledge Random Facts Rigel Facts
T0 Fellowship of the Ring ✓ Fellowship of the Ring ✓ The Hobbit ✗

Table 3: Examples of questions and model predictions. For simplicity, we only show the top four facts. In
Predictions, No Knowledge is only given the question. Random and Rigel Facts are given the question and the
respective facts. The correct answer is indicated with a ✓. Incorrect answers are indicated with a ✗.

the answer entity Drake without following a date
of birth relation and performing a comparison. In
future work, we plan to explore different ways to
train the Rigel model to provide a better training
signal of which facts will be useful to the LM.

Finally, in Table 3, we provide examples. The
first example is a count question, where the LM
seems to count the entities Rigel returns get to
the correct answer. The second example is of a
multi-hop question. Of note is that Rigel’s top
fact is about a high school, but the LM is able to
recover and return a college instead. The third
example is an ordinal question. Since the Rigel
facts do not specify which books are part of the
series, the model returns an incorrect answer by

trying to stay faithful to the facts given. Relying
on facts given rather than facts in the parameters
can be a desirable trait for an LM, however this
example highlights that more work needs to be
done on improving the KGQA retriever.

6 Conclusion

In this paper, we show how facts from a KGQA
based retriever can be combined with a language
model to help answer complex questions. Our re-
sults show improvements over calling a language
model directly over four datasets, and in particular
on complexity types such as multi-hop and count
questions. We present our method as a promising
way to leverage a knowledge graph, which con-



tains verified and up-to-date facts, with a single
call to a language model. In future work, we plan
to improve performance across more complexity
types and aim to explore ways to update the train-
ing of our KGQA retriever with feedback from the
language model.

7 Limitations

We present a method for question answering using
a KGQA retriever and a language model reasoner.
Limitations of our method include a lack of an
integrated entity resolution system when training
our KGQA model: we instead rely on annotated
entities from the datasets. While our KGQA archi-
tecture is robust to new entities added at test time,
it does require retraining when new relations are
added to the KG or if a different target KG is used.
Additionally, our results are based on training and
evaluating on one dataset at a time; training on a
mix of datasets could lead to better generalization,
however this is not tested.
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