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Abstract

End-to-end question answering using a differ-
entiable knowledge graph is a promising tech-
nique that requires only weak supervision, pro-
duces interpretable results, and is fully dif-
ferentiable. Previous implementations of this
technique (Cohen et al., 2020) have focused
on single-entity questions using a relation fol-
lowing operation. In this paper, we propose
a model that explicitly handles multiple-entity
questions by implementing a new intersec-
tion operation, which identifies the shared el-
ements between two sets of entities. We find
that introducing intersection improves perfor-
mance over a baseline model on two datasets,
WebQuestionsSP (69.6% to 73.3% Hits@1)
and ComplexWebQuestions (39.8% to 48.7%
Hits@1), and in particular, improves perfor-
mance on questions with multiple entities by
over 14% on WebQuestionsSP and by 19% on
ComplexWebQuestions.

1 Introduction

Knowledge graphs (KGs) are data structures that
store facts in the form of relations between enti-
ties. Knowledge Graph-based Question Answering
(KGQA) is the task of learning to answer questions
by traversing facts in a knowledge graph. Tradi-
tional approaches to KGQA use semantic parsing
to parse natural language to a logical query, such
as SQL. Annotating these queries, however, can
be expensive and require experts familiar with the
query language and KG ontology.

End-to-end question answering (E2EQA) mod-
els overcome this annotation bottleneck by requir-
ing only weak supervision from question-answer
pairs. These models learn to predict paths in a
knowledge graph using only the answer as the train-
ing signal. In order to train an E2EQA model in a
fully differentiable way, Cohen et al. (2020) pro-
posed differentiable knowledge graphs as a way to
represent KGs as tensors and queries as differen-
tiable mathematical operations.

Figure 1: To answer “Who did Natalie Portman play in
Star Wars Episode II?”, we identify all the characters
Natalie Portman has played, all the characters in Star
Wars Episode II, and intersect the two resulting sets to
get to the answer, Padmé Amidala.

Previous implementations of E2EQA models us-
ing differentiable knowledge graphs (Cohen et al.,
2020) have focused on single-entity questions us-
ing a relation following operation. For example, to
answer “Where was Natalie Portman born?”, the
model could predict a path starting at the Natalie
Portman entity and following a place of birth rela-
tion to the correct answer.

While this follow operation handles many ques-
tions, it often struggles on questions with multi-
ple entities. For example, to answer “Who did
Natalie Portman play in Star Wars Episode II?”, it
is not enough to identify all the characters Natalie
Portman has played, nor all the characters in Star
Wars Episode II. Instead, the model needs to find
what character Natalie Portman has played that is
also a character in Star Wars. This can be solved
through intersection. An intersection of two sets
A and B returns all elements in A that also appear
in B. This example is illustrated in Figure 1.

In this paper, we propose to explicitly handle
multiple-entity questions in E2EQA by learning
intersection in a dynamic multi-hop setting. Our
intersection models learn to both follow relations
and intersect sets of resulting entities in order to
arrive at the correct answer. We find that our mod-



els score 73.3% on WebQuestionsSP and 48.7%
on ComplexWebQuestions, and in particular, im-
prove upon a baseline on questions with multiple
entities from 56.3% to 70.6% on WebQuestionsSP
and 36.8% to 55.8% on ComplexWebQuestions.

2 Related Works

Traditional approaches to KGQA have used seman-
tic parsing (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005) to parse natural language into a
logical form. Collecting semantic parsing training
data can be expensive and is done either manu-
ally (Dahl et al., 1994; Finegan-Dollak et al., 2018)
or using automatic generation (Wang et al., 2015)
which is not always representative of natural ques-
tions (Herzig and Berant, 2019).

Another line of work in KGQA uses embedding
techniques to implicitly infer answers from knowl-
edge graphs. These methods include GRAFT-Net
(Sun et al., 2018), which uses a graph convolutional
network to infer answers from subgraphs, PullNet
(Sun et al., 2019), which improves GRAFT-Net by
learning to retrieve subgraphs, and EmbedKGQA
(Saxena et al., 2020), which incorporates knowl-
edge graph embeddings. EmQL (Sun et al., 2020)
is a query embedding method using set operators,
however these operators need to be pretrained for
each KB. TransferNet (Shi et al., 2021) is a recent
model that trains KGQA in a differentiable way,
however it stores facts as an N x N matrix, where
N is the number of entities, so it runs into scaling
issues with larger knowledge graphs.

Our approach to KGQA based on Cohen et al.
(2020) has three main advantages:

• Interpretability: Models based on graph con-
volutional networks (PullNet, GRAFT-Net)
get good performance but have weak inter-
pretability because they do not output interme-
diate reasoning paths. Our approach outputs
intermediate paths as well as probabilities.

• Scaling: Cohen et al. (2020) show that differ-
entiable KGs can be distributed across multi-
ple GPUs and scaled horizontally, so that dif-
ferent triple IDs are stored on different GPUs,
allowing for scaling to tens of millions of facts.
Other methods using embedding techniques
(EmbedKGQA, EmQL) or less efficient rep-
resentations (TransferNet) are more memory
intensive and not easily distributed.

• No retraining for new entities: Models
based on latent representations of entities (Em-
bedKGQA, EmQL) get state-of-the-art per-
formance, however they need to be retrained
whenever a new entity is added to the KG (e.g.,
a new movie) to learn updated embeddings.
Our approach can incorporate new entities eas-
ily without affecting trained models.

3 Models

3.1 The Baseline Model
Our baseline model, which we call Rigel-Baseline,
is based on differentiable knowledge graphs and
the ReifiedKB model (Cohen et al., 2020). We
provide an overview here but full details can be
found in the original paper.

3.1.1 Differentiable Knowledge Graphs
Assume we have a graph:

G =
{
(s, p, o) | s ∈ E, o ∈ E, p ∈ R

}
, (1)

where E is the set of entities, R is the set of re-
lations, and (s, p, o) is a triple showing that the
relation p holds between a subject entity s and an
object entity o. To create a differentiable knowl-
edge graph, we represent the set of all triples
T = {ti}NT

i=1, ti = (ssi , ppi , ooi) in three ma-
trices: a subject matrix (Ms), relation matrix (Mp),
and object matrix (Mo). A triple (s, p, o) is repre-
sented across all three matrices at a given index.

Ms ∈ {0, 1}NT×NE , Ms(i, j) = I
(
ej = ssi

)
Mp ∈ {0, 1}NT×NR , Mp(i, j) = I

(
pj = ppi

)
Mo ∈ {0, 1}NT×NE , Mo(i, j) = I

(
ej = ooi

)
Since the knowledge graph is represented as ma-
trices, interacting with the knowledge graph is
done with matrix operations. ReifiedKB was im-
plemented with a follow operation: Given an entity
vector xt−1 ∈ RNE at t− 1-th time step and a re-
lation vector rt ∈ RNR , the resulting entity vector
xt is computed by Equation 2 where � is element-
wise multiplication.

xt = follow(xt−1, rt) = MT
o (Msxt−1 �Mprt)

(2)

3.1.2 Model
The Rigel-Baseline model is composed of an en-
coder, which encodes the question, and a decoder,
which returns a probability distribution over KG
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Figure 2: A detailed illustration of the Rigel-Baseline model. The encoder encodes the question, the decoder
predicts relations, and attention selects the final hop. The entities and relations are followed in the KG to return
predicted answers. The loss between the predicted and actual answers is the training signal for the whole model.

relations. The question entities (which, in our ex-
periments, are provided from the datasets) and pre-
dicted relations are followed in the differentiable
knowledge graph to return predicted answers. Pre-
dicted answers are compared to labeled answers,
and the loss is used to update the model. Rigel-
Baseline is illustrated in Figure 2.

We make the following key improvements to Rei-
fiedKB. First, we use RoBERTa (Liu et al., 2019)
as our encoder instead of word2vec. Second, Rei-
fiedKB used different methods to determine the
correct number of hops in multi-hop questions. We
implement an attention mechanism using a hierar-
chical decoder W dec

t , which is learned and a unified
approach across datasets. Given a question embed-
ding hq and relation vector rt, the resulting entity
vector xt is computed as:

rt =softmax
(
W dec

t

[
hq|rt−1| · · · |r1

]T) (3)

xt =follow(xt−1, rt) (4)

We compute an attention score across all hops with:

ct =W att
t

[
hq|rt−1| · · · |r1

]T (5)

a =softmax([c1, · · · , cTh
]) (6)

and compute the final estimate ŷ as:

ŷ =

Th∑
t=1

atxt. (7)

Finally, while ReifiedKB used cross-entropy as its
loss function, we instead use a multi-label loss
function across all entities. This is because the
output space in many samples contains multiple
entities, so cross-entropy loss is inadequate.

L(y, ŷ) = 1

NE

NE∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)

(8)

3.2 The Intersection Model
In order to build a model that can handle multi-
ple entities, we expand Rigel-Baseline with a dif-
ferentiable intersection operation to create Rigel-
Intersect. We define intersection as the element-
wise minimum of two vectors. While differentiable
intersection has previously been implemented as
element-wise multiplication (Cohen et al., 2019),
we prefer to use minimum since it prevents dimin-
ishing probabilities. Given two vectors a and b, the
element-wise minimum (minelem) returns a mini-
mum (min) at each index where min(an, bn) will
return an if an < bn, or bn if bn < an. Any ele-
ment that appears in both vectors returns a non-zero
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Figure 3: An illustration of the Rigel-Intersect model. Given a question with two entities, we run each question
entity in parallel to return intermediate answers. These answers are intersected to return the final answer. The loss
between the final answer and the actual answer is the training signal for the whole model.

value, and elements that appears in one or neither
vector return a 0.

minelem



a1
a2
...
an


,


b1
b2
...
bn


 =


min(a1, b1)
min(a2, b2)

...
min(an, bn)

 (9)

Next, we modify the encoder to allow entity-
specific question embeddings. The Rigel-Baseline
encoder creates one generic question embedding
per question, but we may want to follow different
relations for each entity. To calculate the ques-
tion embedding hq using an encoder fq, for each
question entity, we concatenate the question text
q with the entity’s mention or canonical name m
separated by a separator token [SEP]. We use the
embedding at the separator token index iSEP as
the entity-specific representation of the question.

hq = fq(q [SEP] m)[:, iSEP , :] (10)

In the decoder, we predict inference chains in
parallel for each entity, and follow the entities and
relations in the differentiable KG to return interme-
diate answers. We intersect the two intermediate
answers to return the final answer. In multi-hop
settings, we weight entities in each vector before
intersection based on the attention score. We train

using the hyperparameters in Appendix A. Rigel-
Intersect is illustrated in Figure 3.

Our implementation of intersection takes a max-
imum of two entities per question. We use the first
two labeled entities per question and ignore subse-
quent ones. This works well for our datasets where
94% of questions contain a maximum of two enti-
ties. Given a dataset with more complex questions,
we can extend our implementation in the future to
an arbitrary number of entities.

4 Datasets

We use two datasets in our experiments:
WebQuestionsSP (Yih et al., 2016) is an En-

glish question-answering dataset of 4,737 questions
(2,792 train, 306 dev, 1,639 test) that are answer-
able using Freebase (Bollacker et al., 2008). Dur-
ing training, we exclude 30 training set questions
with no answer, and during evaluation, we exclude
13 test set questions with no answer and count them
as failures in our Hits@1 score. All questions are
answerable by 1 or 2 hop chains of inference, so
we set our models to a maximum of 2 hops. To
create a subset of Freebase, we identify all question
entities and relations in WebQuestionsSP and build
a subgraph containing all facts reachable from 2
hops of the question entities, as done in previous
works (Cohen et al., 2020). This creates a sub-



graph of 17.8 million facts, 9.9 million entities, and
670 relations. We create inverse relations for each
relation (e.g., place of birth returns a person’s birth-
place; inv-place of birth returns people born in that
location), for a total of 1,340 relations.

ComplexWebQuestions (Talmor and Berant,
2018) is an extended version of WebQuestionsSP
with 34,689 questions (27,649 train, 3,509 dev,
3,531 test) in English requiring complex reason-
ing. During training, we exclude 163 questions
that are missing question or answer entities, and
during evaluation, we exclude 21 examples from
the test set for the same reasons and count them as
failures in the Hits@1 score. We limit our model to
2 hops for training efficiency. To create a subset of
Freebase, we identify all question entities and rela-
tions in the dataset and build a subgraph containing
all facts reachable within 2 hops of the question
entities. This results in a subgraph of 43.2 million
facts, 17.5 million entities, and 848 relations (1,696
including inverse relations).

5 Results

Model WQSP CWQ

KVMem (Miller et al., 2016) 46.7 21.1
GRAFT-Net (Sun et al., 2018) 67.8 32.8
PullNet (Sun et al., 2019) 68.1 47.2
ReifiedKB (Cohen et al., 2020) 52.7 –
EmQL (Sun et al., 2020) 75.5 –
TransferNet (Shi et al., 2021) 71.4 48.6

Rigel-Baseline (ours) 69.6 39.8
Rigel-Intersect (ours) 73.3 48.7

Table 1: Comparison of Hits@1 results on WebQues-
tionsSP (WQSP) and ComplexWebQuestions (CWQ)

Dataset Baseline Intersect

WebQSP 69.6 73.3
WebQSP 1 Entity 75.8 75.3
WebQSP >1 Entity 56.3 70.6

CWQ 39.8 48.7
CWQ 1 Entity 43.1 42.7
CWQ >1 Entity 36.8 55.8

Table 2: Hits@1 breakdown by number of entities for
Rigel-Baseline and Rigel-Intersect

Our results are in Tables 1 and 2. Scores are

reported as Hits@1, which is the accuracy of the
top predicted answer from the model. Table 1 com-
pares our scores to previous models. The aim of
our paper is to show an extension of a promising
KGQA technique, not to produce state-of-the-art
results, but this table shows that Rigel-Intersect
is competitive with recent models. Our improved
Rigel-Baseline scores higher than ReifiedKB on
WebQuestionsSP at 69.6%, and Rigel-Intersect im-
proves upon that at 73.3%. On ComplexWebQues-
tions, Rigel-Baseline scores lower than recent meth-
ods at 39.8%, but Rigel-Intersect gets competitive
results with 48.7%.

The breakdown of results in Table 2 shows that
the improved performance of Rigel-Intersect comes
from better handling of questions with multiple en-
tities. While Rigel-Baseline and Rigel-Intersect are
comparable on questions with one entity, Rigel-
Intersect surpasses Rigel-Baseline on questions
with more than 1 entity by over 14% on WebQues-
tionsSP (56.3% vs. 70.6%) and by 19% on Com-
plexWebQuestions (36.8% vs. 55.8%). Example
model outputs are in Appendix C.

Rigel-Baseline is not incapable of handling
multiple-entity questions because not all questions
require intersection. For example, in "Who played
Jacob Black in Twilight?", the model can follow
Jacob Black to the actor, Taylor Lautner, with-
out intersecting with Twilight because only one
actor has played Jacob Black. This is not possi-
ble for characters such as James Bond or Batman,
who are portrayed by different actors in different
movies. Although Rigel-Baseline can spuriously
handle multiple-entity questions, Rigel-Intersect
uses more accurate inference chains.

6 Conclusions

In this paper, we expand an end-to-end question
answering model using differentiable knowledge
graphs to learn an intersection operation. We show
that introducing intersection improves performance
on WebQuestionsSP and ComplexWebQuestions.
This improvement comes primarily from better han-
dling of questions with multiple entities, which im-
proves by over 14% on WebQuestionsSP, and by
19% on ComplexWebQuestions. In future work,
we plan to expand our model to more operations,
such as union or difference, to continue improving
model performance on complex questions.
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A Model Hyperparameters

We train Rigel-Baseline and Rigel-Intersect using
the hyperparameters shown below. For WebQues-
tionsSP, we train on a single 16GB GPU. Training
completes in approximately 12 hours. ComplexWe-
bQuestions is a larger dataset with a larger knowl-
edge graph, so we train on 4 16GB GPUs, with the
knowledge graph distributed across 3 GPUs and
the model on the fourth GPU. Training completes
in approximately 40 hours.

Hyperparameter WQSP CWQ

Batch Size 4 2
Gradient Accumulation 32 64
Training Steps 40000 80000
Learning Rate 1e-4 1e-4
Max Number of Hops 2 2

Table 3: Hyperparameters for training on WebQues-
tionsSP (WQSP) and ComplexWebQuestions (CWQ)

B Validation and Test Performance

The table below shows the corresponding valida-
tion performances on the dev set for each test result.

Dataset Model Dev Test

WQSP Rigel-Baseline 72.9 69.6
Rigel-Intersect 77.1 73.3

CWQ Rigel-Baseline 40.8 39.8
Rigel-Intersect 48.1 48.7

Table 4: Validation and test performance in terms
of Hits@1 for WebQuestionsSP (WQSP) and Com-
plexWebQuestions (CWQ)

C Examples

The table on the following page shows example
outputs of Rigel-Baseline and Rigel-Intersect. We
only show the top predicted inference chain for
each question, but in practice, a probability distri-
bution over all relations is returned. The model
also predicts how many hops to take based on an

attention score. In our examples, if the model pre-
dicts one hop, we show only the top relation from
the first hop. If the model predicts two hops, then
we show the top relations for both hops.

The first two examples are questions that Rigel-
Intersect handles well. In both of these questions,
there are multiple probable answers if only one
entity is followed (i.e., Russell Wilson attended
multiple educational institutions; Michael Keaton
has played multiple roles). However only one an-
swer is correct if all entities are considered. The
final question is an example where Rigel-Baseline
answers correctly even though there are two enti-
ties. This is because there is only one winner of the
2014 Eurocup Finals Championship, which Rigel-
Baseline can identify without needing to check if
the team is from Spain.



Q: What educational institution with The Badger Herald newspaper did Russell Wilson go to?
A: University of Wisconsin–Madison

Rigel-Baseline
Russell Wilson→ people.person.education→ education.education.institution
→ Collegiate School 7

Rigel-Intersect
Russell Wilson→ people.person.education→ education.education.institution
The Badger Herald→ <inv>-education.educational_institution.newspaper
Intersection→ University of Wisconsin–Madison 3

Q: Who does Michael Keaton play in Cars?
A: Chick Hicks

Rigel-Baseline
Michael Keaton→ film.actor.film→ film.performance.character
→ Birdman 7

Rigel-Intersect
Michael Keaton→ film.actor.film→ film.performance.character
Cars→ film.film.starring→ film.performance.character
Intersection→ Chick Hicks 3

Q: Which popular sports team in Spain won the 2014 Eurocup Finals Championship?
A: Valencia BC

Rigel-Baseline
2014 Eurocup Finals Championship→ sports.sports_championship_event.champion
→ Valencia BC 3

Rigel-Intersect
Spain→ <inv>-sports.sports_team.location
2014 Eurocup Finals Championship→ sports.sports_championship_event.champion
Intersection→ Valencia BC 3

Table 5: Example outputs of Rigel-Baseline and Rigel-Intersect


